
Conceptual Content Management for

Pattern-based Software Design: An E-Learning

Experience

Hans-Werner Sehring, Sebastian Bossung, Patrick Hupe, Michael Skusa, and
Joachim W. Schmidt

{hw.sehring,sebastian.bossung,pa.hupe,skusa,j.w.schmidt}@tuhh.de
Software Systems Institute (STS)

Hamburg University of Science and Technology (TUHH)

Abstract. Modern software engineering masters its complexity prob-
lems by applying well-understood development principles. It was the
adaptation of design patterns which caused a significant improvement
of software design and is one remedy of what was formerly called the
software crises. Due to their regular structure and orthogonal applica-
bility the application of design patterns can serve as one class of use
cases for software development tools. Design patterns and their utiliza-
tion constitute an increasing body of knowledge in software engineering.
Their regular structure and the availability of meaningful examples make
design patterns well-suited for organizational memory and e-learning en-
vironments. Patterns are defined and described on two levels [7]:
– by real-world examples, i.e., content on their principles, best prac-

tices, structure diagrams, code etc.
– by conceptual models on problem, solution, consequences etc.

This intrinsically dualistic nature of patterns makes them good candi-
dates for conceptual content management (CCM). In this paper we re-
port on the use of the CCM approach for the realization of a CCM system
for teaching and training in pattern-based software design as well as for
the support of the corresponding e-learning processes.

1 Introduction and Motivation

The entire field of modern software engineering (SE) is a diverse and complex
endeavor. Many advances had to be made to master what we use to call the soft-
ware crisis. One important key to success was finally found in software patterns
which introduced another level of abstraction in software design processes and
decreased the complexity of designs considerably. Since their first publication in
the early 90ies [7] design patterns (and the idea of software patterns in general)
have been quickly adapted and are today in wide-spread use.

As modern software systems become ever larger and more complex most
software development paradigms agree that some planning-ahead is needed in
order to successfully carry out a software development project [22]. While re-
quirements for the application under development are collected during an initial



application analysis phase the subsequent design phase aims at a coarse design
of the system under development. In this light design patterns are abstractions
over pieces of software with shared design requirements thus helping to exploit
accumulated design experience.

Design patterns turn out to be essential pieces of knowledge for software en-
gineers and, consequently, have to be covered by software engineering curricula.
As the mere awareness of a design pattern does not enable a software engi-
neering student to appropriately apply it, the pragmatics of pattern application
should also be taught. This can be achieved by providing pattern definitions
together with best-practice pattern applications and by enabling students to re-
late, publicize and discuss their personal pattern applications in such definitional
contexts. Students can thus actively participate in the design process resulting
in an improved learning experience.

In previous projects we have used our Conceptual Content Management
(CCM) approach to provide extensional concept definitions and to embed such
CCM material into learning environments—albeit in political iconography [20]or
art history applications [2]. In this paper we introduce a conceptual model for
design patterns and show how previous experiences with active learning can be
carried over from neighboring fields to SE. We discuss how existing work on
patterns (e.g., [7]) can be represented, communicated and applied by CCM.

The remainder of this paper is organized as follows: We commence with an
overview over requirements to SE tools and their relationships with content man-
agement in section 2. In section 3 we provide a conceptual model suitable for
describing patterns in learning systems and also report on some related work.
Section 4 describes pattern learning scenarios with particular emphasis on ac-
tive learning in conceptual content management systems. We conclude with a
summary and outlook in section 5.

2 Requirements for Software Engineering Tools

As a basis for discussion this section contains some remarks on SE processes,
in particular on the pattern-based design of software, and we argue that SE—
especially the aspect of conserving design knowledge—shares properties of ad-
vanced content management tasks.

2.1 Software Engineering Processes

A typical SE process consists of several phases: analysis, design, implementation
and test (e.g., [22]). During these phases, numerous artifacts are created. These
artifacts stem from different models and coexist for various reasons: different
levels of abstraction, perspectives, revisions, or alternate representations.

Typically, artifacts of later phases are created from higher-level artifacts
of the previous phases, but dependencies are not linear and difficult to trace:
Diverse analysis requirements, platform constraints and modeling acts such as
architectural decisions, pattern applications, etc. manifest themselves in later



designer

design phase
activities

pattern−based
design

pattern application
<< include >>

 

apply "composite"
apply
 "abstract factory"

apply "..."

Fig. 1. Design use cases

artifacts. While the knowledge about these manifestations is available at the
point of decision-making, this information often is not part of a SE process [10].
Instead, such information has to be recorded in additional documentation which
accompanies the process. Only recently efforts have begun to interconnect these
artifacts at least partially [16]. The conservation and communication of devel-
opment experience is an issue not systematically addressed by SE.

2.2 Design Phase Activities

One of the phases of typical SE processes is that of design. This phase gains lots
of attention because it is the point where reuse of development experience can
take place at a high level.

The application of design patterns has become an important member of the
set of design activities (fig. 1). Reasons are that such applications are well-
understood. Design patterns constitute a growing body of knowledge and best-
practices. They can be used to preserve and communicate design experience.

These reasons—design patterns being well-understood and being a medium
to communicate development experience—makes them a germane means for
teaching software development. We apply patterns in SE education as a first
object of study towards a model-based treatment of design patterns. As a first
step in this direction we treat specific patterns (see fig. 1).

2.3 Software Engineering as a Content Management Activity

We have studied how entities are represented by means of content manage-
ment [18] also with particular regard to SE [3]. Emphasis is put on the rep-
resentation of entities that cannot fully be represented by data records alone,
especially items that have subjective interpretations. We refer to the research of
such content management applications as conceptual content management (CCM
for short).

Based on the epistemic observation that neither content nor concept exist
in isolation, CCM is based on the conjoint representation of entities by pairs
of content and conceptual descriptions. For pairs of these two we introduce the



notion of assets. Content is presented by arbitrary multimedia documents. Con-

cepts—following semiotics—consist of the characteristic properties of entities,
relationships with other assets which describe the interdependencies of entities,
and constraints on those characteristics and relationships.

The statements of the asset language allow the definition of asset classes, the
creation and manipulation of asset instances, and their retrieval. Some examples
follow. For a more complete description of the asset language see [21].

The following sketches asset definitions for a SE processes:

model GeneralSoftwareEngineering

class SoftwareModel {

content xmiDocument :org.w3c.dom.Document

concept relationship classes :ClassDescription*
relationship sequences :Sequence*
constraint operationsDefined
sequences.objActs.msgs <= classes.operations.name
and . . . ; matching signatures

.

.

. }

class Sequence {

content topNode :org.w3c.dom.Element

concept relationship objActs :ObjectActivation* }

class ObjectActivation ...

In the example, an XML document is the content of a general SoftwareModel,
presumably an XMI representation of UML diagrams. Related instances of fur-
ther asset classes are used to describe parts of the software model—classes,
sequences, etc.—in more detail.

SE entities are described by the aforementioned characteristic attributes and
relationships. Possible types of content handles and characteristics are deter-
mined by an embedded language which also is the target language of the model
compiler (currently Java). More extensive use of the asset model is achieved by
employing constraints that reflect the rules of the chosen SE process. In the
example this is demonstrated by a constraint operationsDefined which in
addition to the semantics of the UML ensures that for each message sent ac-
cording to a sequence diagram a method with a matching signature is defined.

Since assets are especially designed to support subjective views, asset classes
as well as instances can be personalized by means of redefinitions on an individual
basis. Based on the above definition of SoftwareModel a user can define

model MySoftwareEngineering

from GeneralSoftwareEngineering import SoftwareModel

class SoftwareModel {

concept relationship objects :ObjectDescription*
constraint objects.type <= classes }

to explicitly refer to instances and to require that all of their classes have to
be part of the model. Anything that is not mentioned in the personalization
remains the same as in the original definition.



For asset redefinitions there is a demand for openness and dynamics. We
call a CCM system (CCMS) open if it allows users to define assets according to
their current information needs. Dynamics is the ability of a system to follow
redefinitions of assets at runtime without interrupting the users’ work.

To account for dynamics, our approach to CCM consists of three main con-
tributions [17]: an asset language for the description of entities by both content
and conceptual expressions, a modularized architecture for evolving conceptual
content management systems, and a model compiler which translates expressions
given in the asset language into CCMSs.

3 Modeling Design Patterns

3.1 Design Patterns

The central idea of design patterns is to capture solutions to recurring problems.
In other words, experiences gained by adept programmers are put into a form
that is suitable to pass on these experiences to others, thereby eliminate the need
for them to relearn the same knowledge “the hard way”. The exact workings of
this mechanism are currently under research, see [10]. This capturing of short-
cuts in learning experiences makes design patterns an important part of SE
curricula.

Existing work on design patterns (most prominently Gamma et al, [7]) iden-
tifies four central elements of a pattern: A name, a context in which it can be
applied, the solution it provides, and the consequences that arise from it. How-
ever, [7] also acknowledge that there is some subjectivity in design patterns. The
authors not that what is and what is not a pattern depends on the individual
user’s point of view. Other work [24] also points out the common definition of a
design pattern being “a solution to a problem in a context” should be extended
to also include: information about Recurrence as well as about Teaching, to pro-
vide the means to apply the solution to new situations and to notice that an
opportunity to do so has arisen in the first place. This is particularly important
with respect to teaching patterns, where a definition of the design patterns is
not sufficient. We will describe in section 4.3 how these aspects are handled by
our CCMSs.

3.2 Pattern Description Languages

The need for a pattern description language arises in several context which can
broadly be divided into those that aim to support the task of creating software
(e.g., generatively) and those that inspect existing software (e.g., to discover
existing patterns).

A first metamodel for pattern-based CASE tools in proposed in [15]. Based on
this metamodel, pattern instantiation is proposed, relating available patterns to
actual application artifacts. UML also offers the collaboration mechanism which
can to some extend be used to model design patterns. By itself this is too weak



Pattern

CompositePattern

Class

Association
Leaf

Composition

SoftwareEngineeringCompositePattern

Patterns

Method

Fig. 2. Classes from different models are combined to model patterns. Most of the
model is omitted in this figure for conciseness.

a model for pattern-based tools, which need additional means, e.g., OCL [23].
Yet other tools let programmers work on different levels of abstraction allowing
them to work on the source code as well as to instantiate patterns [6].

Pattern extraction from existing software is also of interest (e.g., [8]). The
aim is to identify micro-architecture, part of which are patterns. To this end an
XML repository is created that can store such micro-architectures by modeling
classes in roles. The MVCASE tool for design pattern application [12] uses XMI
to describe patterns. The description is geared towards system supported ap-
plication of the pattern. Taking this one step further, there are approaches to
enforce the use of design patterns, e.g., [11].

These approaches offer metamodels for design patterns with several different
foci, but there is a large overlap at their cores. Commonly no clear distinction
between pattern description and the general object-oriented metamodel is made.
Our metamodel for patterns is loosely similar to most existing models, but aims
to improve the separation of general pattern description, object-oriented meta-
model and specific pattern descriptions for learning.

3.3 A CCM Model for Pattern-based Design

Design patterns are generally presented in a semi-structured manner. Gamma
et al identify four essential parts of a pattern: name, problem, solution and
consequences [7]. Further substructuring of these elements is not prescribed, even
though most authors try to adopt a uniform heading structure. However, there
are also approaches that fully formalize the description of design patterns such
as [14]. This can provide well-defined semantics for the descriptions as well as
reasoning on them. Such formalizations are hardly useful in teaching patterns as
learners need to gain an intuitive understanding to be able to identify situations
where the pattern is relevant.

At the root of our conceptual model for patterns is a basic Pattern class
whose concept offers the four core elements of patterns. Context, solution and
consequences are described as content in semi-structured documents.



model Patterns

class Pattern {

content problem :StructuredDocument
solution :StructuredDocument
consequences :StructuredDocument

concept characteristic name :String
relationship collaborators :ClassDescription
relationship collaboratorAspects :ClassMember }

Furthermore due to the availability of openness and dynamics, a CCMS al-
lows users to model the patterns to any degree of specificity they want. This can
even mean that a class is created for one specific pattern alone if this is required
by the learning context. We demonstrate this with the composite pattern:

class CompositePattern refines Pattern {

concept characteristic name :String := "Composite"
relationship component :ClassDescription
relationship composite :ClassDescription
relationship leaf :ClassDescription
relationship composition :AssociationDescription
... }

To capture pattern applications in a way meaningful to students, the appli-
cations have to be put into context of the whole application they were made in.
The respective parts of the application domain can be captured by using our
GeneralSoftwareEngineering model (see [3]). By refining the general pat-
tern model and using the SE model, concrete patterns can be described, fig. 2
gives a brief example for the Composite pattern. Instances of this class are used
to describe concrete applications of the pattern:

model CompositePatternApplication

from GeneralSoftwareEngineering import

ClassDescription,Association

from Patterns import CompositePattern

let compositeApp := create CompositePattern {

problem := ...
...

component :=

lookfor ClassDescription { name="Figure" package=... }

composition :=

lookfor Association { source=composite target=component }
... }

4 Pattern Learning Scenarios

The application of design patterns has become a commonly accepted design ac-
tivity. Therefore, teaching the most useful patterns has become an important



Fig. 3. Learning cycle from the learner’s point of view. Inspired by [1]

part of the education or training of software developers. However, applying pat-
terns requires tacit knowledge that cannot be studied on a purely theoretical
basis. One needs to learn to actively apply patterns. In this section we argue
that active learning is supported well by CCM systems.

A pattern is more than a solution to a problem in a context [24]. Especially
for teaching purposes improved descriptions of design patterns are needed. Us-
ing the open modeling of the CCM approach such improved descriptions can
be formulated, in particular including content. By such combined descriptions,
CCM allows active learning processes for design pattern application.

4.1 Active Learning Through Open Dynamic CCM

As is witnessed by many taught courses, understanding content and applying the
learnt are essential parts of learning [4]. Constructionists interpret learning as
the construction of knowledge and not its absorption [19]. Practical application
facilitates the lasting storage of information.

Fig. 3 depicts such an active way of learning. There are two levels, which
differ in closeness to the learner as well as in speed of iteration. The inner cycle
constitutes active learning. It is usually carried out by one learner alone. The
outer circle describes the interaction with others, learners as well as teachers.

Typical e-learning systems support a passive way of learning: There are usu-
ally a number of ways to present lessons to learners [9]. The interaction of learner
and system is frequently limited to formal testing.

All activities indicated in the learning circle in fig. 3 are covered by personal-
ization [20]. It supports discourse through exchange of personalized content and
conceptual models with a limited group of peer learners. Most importantly, users
are enabled to take action in the system itself and learn through the results of
their action. They can recombine artifacts to solve learning problems.

This allows an approach to e-learning in which learners can structurally re-
work or even extend the subject matter. For example, a lesson can start with
a given partial model that the learners are to complete. In doing so, they ap-



pattern 
learnerpattern

expert

detect pattern
application

view pattern
users

apply patterns

describe pattern
complete partial
descriptions

Fig. 4. Learning use cases

ply what they previously learned. Thinning out the content is again achieved
through personalization (the left-out pieces are of course not deleted globally).

4.2 Requirements for Teaching Pattern-oriented Design

Teaching design patterns requires rich descriptions [24]. In sec. 3.3 asset models
for typical design pattern descriptions have been shown. The openness of the
model allows users to extend these for teaching purposes. Though such exten-
sions do not automatically lead to a complete model of e-learning they can be
combined with general learning models [5] to this end.

Fig. 4 shows typical use cases for a design pattern learning scenario. Here a
pattern expert prepares case studies as examples or master solutions for a pattern

learner, or the expert gives exercises to be solved by the learner.
In the previous section it has been mentioned that a teacher can hand partial

solutions to learners. By means of personalization each learner can solve exercises
individually, for instance to complete such partially given pattern descriptions
or to simulate pattern applications. Personalization furthermore allows change
of existing designs to try out modeling alternatives.

If only class diagrams are given, an exercise can be to detect pattern appli-
cations by capturing the classes’ roles in (personal) Pattern asset instances.

4.3 A CCMS for Teaching Patterns

Through the CCM approach a CCMS for the management of pattern descriptions
can be generated from the models presented in sec. 3.3. General requirements
for such a CCMS can be deduced from [13]. The ability to serve as a tutoring
system is based on the consideration of both content and conceptual models in
assets and on the modeling openness.

Hosted content can serve an extensional definition of a design pattern by
giving an abstract definition and by showing several applications, counter ex-
amples, etc. Conceptual models point out the design patterns that are visible
in content. The dynamic nature of CCMSs permits active learning processes as
discussed in the previous sections.



A design pattern CCMS can be set up as a compound system which includes
the CCMS generated for GeneralSoftwareEngineering as a subsystem.
This subsystem can then be used independently in SE processes, while the pat-
tern description system manages the accompanying information on pattern ap-
plications.

5 Summary and Outlook

We have shown that it is beneficial for teaching purposes to model design pat-
terns dualistically. This helps students to understand patterns by rich medial
representation as well as a conceptual model. Furthermore schema personaliza-
tion enables active learning as it allows learners to model the subject under study
in the most appropriate way. Similar benefits arise from instance personalization
where students are asked to complete partial content.

In future work it will be interesting to extend our conceptual model of design
patterns to reach further into SE. It can then not only be used for teaching but
will also be applicable to software creation proper. In the area of learning systems
improving the reactions of the system to its users seems promising. The goal is
to make learning systems react smartly to student’s modeling decisions (e.g., by
try to detect common misconceptions with patterns).

References

1. H. Allert, C. Richter, and W. Nejdl. Lifelong learning and second-order learning
objects. British Journal of Educational Technology, 35(6):701–715, 2004.

2. S. Bossung, H.-W. Sehring, P. Hupe, and J. W. Schmidt. Open and dynamic
schema evolution in content-intensive web applications. In Proceedings of the
Second International Conference on Web Information Systems and Technologies,
pages 109–116. INSTICC, INSTICC Press, April 2006.

3. S. Bossung, H.-W. Sehring, M. Skusa, and J. W. Schmidt. Conceptual Content
Management for Software Engineering Processes. In Advances in Databases and
Information Systems: 9th East European Conference, ADBIS 2005, volume 3631
of Lecture Notes in Computer Science, page 309. Springer-Verlag, 2005.

4. W. Clancy. A Tutorial on situated learning. In Proceedings of the International
Conference on Computers and Education, 1995.

5. M. Derntl and R. Motschnig-Pitrik. Conceptual modeling of reusable learning
scenarios for person-centered e-learning. In Proceedings of International Workshop
for Interactive Computer-Aided Learning (ICL’03). Kassel University Press, 2003.

6. G. Florijn, M. Meijers, and P. van Winsen. Tool support for object-oriented pat-
terns. In M. Aksit and S. Matsuoka, editors, Proceedings of ECOOP ’97 - Object-
Oriented Programming: 11th EuropeanConference, volume 1241 of Lecture Notes
in Computer Science, page 472. Springer, 1997.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company, New York, NY, 1994.



8. Y.-G. Guéhéneuc, H. A. Sahraoui, and F. Zaidi. Fingerprinting Design Patterns.
In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE
2004), pages 172–181. IEEE Computer Society, 2004.

9. S. Guttomsen Schär and H. Krueger. Learning Technologies with Multimedia.
IEEE Multimedia, 7(3):40–51, 2000.

10. Y.-G. Gueuc, S. Monnier, and G. Antoniol. Evaluating the Use of Design Patterns
during Program Comprehension – Experimental Setting. In Proceedings of the 1st
International Workshop in Design Pattern Theory and Practice. IEEE Computer
Society Press, 2005.

11. HervAlbin-Amiot, P. Cointe, Y.-G. Gueuc, and N. Jussien. Instantiating and De-
tecting Design Patterns: Putting Bits and Pieces Together. In Proceedings of the
16th IEEE International Conference on Automated Software Engineering (ASE
2001), pages 166–173, 2001.

12. D. Lucrio, A. Alvaro, E. S. de Almeida, and A. F. do Prado. MVCASE Tool
– Working with Design Patterns. In Proceedings of the Third Latin American
Conference on Pattern Languages of Programming (SugarLoafPLoP 2003), 2003.

13. G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing.
In 3rd Pattern Languages of Programming conference, Monticello, USA, 1996.

14. T. Mikkonen. Formalizing design patterns. In ICSE ’98: Proceedings of the 20th
international conference on Software engineering, pages 115–124, Washington, DC,
USA, 1998. IEEE Computer Society.

15. B.-U. Pagel and M. Winter. Towards Pattern-Based Tools. In Proc. EuroPLoP’96,
1996.

16. I. Reinhartz-Berger. Conceptual modeling of structure and behavior with uml the
top level object-oriented framework (tloof) approach. In Proc. ER’05, volume 3716
of LNCS, pages 1–15, 2005.

17. J. W. Schmidt and H.-W. Sehring. Conceptual Content Modeling and Manage-
ment: The Rationale of an Asset Language. In Proc. Perspectives of System Infor-
matics, PSI’03, volume 2890 of LNCS, pages 469–493. Springer-Verlag, 2003.

18. J. W. Schmidt, H.-W. Sehring, M. Skusa, and A. Wienberg. Subject-Oriented
Work: Lessons Learned from an Interdisciplinary Content Management Project. In
Advances in Databases and Information Systems, 5th East European Conference,
ADBIS 2001, volume 2151 of Lecture Notes in Computer Science, pages 3–26.
Springer, September 2001.

19. U. Schroeder. Meta-Learning Functionality in eLearning Systems. In Proc. Int.
Conf. on Advances in Infrastructure for Electronic Business, Education, Science,
and Medicine on the Internet, 2002.

20. H. Sehring, S. Bossung, and J. Schmidt. Active Learning By Personalization -
Lessons Learnt from Research in Conceptual Content Management. In Proceedings
of the 1st International Conference on Web Information Systems and Technologies,
pages 496–503. INSTICC Press Miami, May 2005.

21. H.-W. Sehring and J. W. Schmidt. Beyond Databases: An Asset Language for
Conceptual Content Management. In Proceedings of the 8th East European Con-
ference on Advances in Databases and Information Systems, volume 3255 of LNCS,
pages 99–112. Springer-Verlag, 2004.

22. I. Sommerville. Software Engineering. Addison-Wesley, 2000.
23. G. Sunye, A. L. Guennec, and J.-M. Jquel. Design Patterns Application in UML.

In ECOOP, pages 44–62, 2000.
24. J. Vlissides. Pattern Hatching: Design Patterns Applied. The Software Pattern

Series. Addison Wesley Longman, 1998.


