Pattern Repositories for Software
Engineering Education

Hans-Werner Sehring, Sebastian Bossung, Patrick Hupe,
Michael Skusa, and Joachim W. Schmidt

{hw.sehring,sebastian.bossung,pa.hupe,skusa,j.widgl@iuhh.de
Software Systems Institute (STS)
Hamburg University of Science and Technology (TUHH)

Abstract. Modern software engineering attacks its complexity problegnapply-
ing well-understood development principles. In particullae systematic adoption
of design patternsaused a significant improvement of software engineeringsand i
one of the most effective remedies for what was formerly caliedoftware crises
Design patterns and their utilization constitute an insiegbody of knowledge in
software engineering. Due to their regular structure rtbethogonal applicability
and the availability of meaningful examples design patteamsserve as an excel-
lent set of use cases for organizational memories, for soétdavelopment tools
and for e-learning environments.

Patterns are defined and described on two levels [1]: bywedH examples—e.g.,
textual or graphical content on their principles, best ficas, structure diagrams,
code etc.—and by conceptual models—e.g., on categoriepbtajon problems,
software solutions, deployment consequences etc. Thissidally dualistic na-
ture of patterns makes them good candidates for conceptotdomanagement
(CCM). In this paper we report on the application of the CCNrach to a repos-
itory for teaching and training in pattern-based softwagsigh as well as for the
support of the corresponding e-learning processes.

Keywords. Conceptual modeling, content management, design patteles;reng

1. Introduction and Motivation

The entire field of modern software engineering (SE) is ardevand complex endeavor.
Many advances had to be made to master what we used to catifthee crisis. One
important key to success was finally found in software past@rhich introduced another
level of abstraction to software design processes and asetldhe complexity of designs
considerably. Since their first publication in the earlye30j1] design patterns (and the
idea of software patterns in general) have been quickly idioand today are in wide-
spread use.

As modern software systems become ever larger and more epmyst software
development paradigms agree that some planning-ahea@dgaén order to success-
fully carry out a software development project [2]. While ugegments for the appli-
cation under development are collected during an initigliaption analysis phase, the
subsequent design phase aims at a coarse design of thereoftvahis light, design

patterns are abstractions over pieces of software witheshaesign requirements thus
helping to exploit accumulated design experience.

Design patterns turn out to be essential pieces of knowléatgeftware engineers
and, consequently, have to be covered by software engimeetrricula. As the mere
awareness of a design pattern does not enable a studentwésoEngineering to ap-
propriately apply it, the pragmatics of pattern applicasichould also be taught. This
can be achieved by providing pattern definitions togeth#n Wést-practice pattern ap-
plications and by enabling students to relate, publicizédiacuss their personal pattern
applications in such definitional contexts. Students cas tictively participate in the
design process, resulting in an improved learning expegien

In previous projects we have used our Conceptual Contenalyement (CCM) ap-
proach to provide extensional concept definitions and toeshsiich CCM material into
learning environments—albeit in political iconography ¢§8Jart history applications [4].
In this paper we sketch a conceptual model for design patmd show how previous
experiences with active learning can be carried over to SEdMtuss how existing work
on patterns (e.g., [1]) can be represented, communicatedaaplied by CCM.

The remainder of this paper is organized as follows: We conuaevith an overview
of requirements to SE tools and their relationships witheohmanagement in section 2.
In section 3 we provide a conceptual model suitable for deisy patterns in learning
systems and also report on some related work. Section 4ilbdesgattern learning sce-
narios with particular emphasis on active learning in cphea content management
systems. We conclude with a summary and outlook in section 5.

2. Requirementsfor Software Engineering Tools

As a basis for discussion this section contains some renoar& processes, in particu-
lar on the pattern-based design of software, and we argu&Ea-especially the aspect
of conserving design knowledge—shares properties of aghoontent management
tasks.

2.1. Software Engineering Processes

A typical SE process consists of several phases: analysssgm implementation and
test (e.g., [2]). During these phases, numerous artifaetsr@ated. These artifacts stem
from different models and coexist for various reasons:ed#t levels of abstraction,
perspectives, revisions, or alternate representations.

Typically, artifacts of later phases are created from higbeel artifacts of earlier
phases, but dependencies are not linear and difficult te:tiaiwerse analysis require-
ments, platform constraints and modeling acts such astacthial decisions, pattern
applications, etc. manifest themselves in later artifastisile the knowledge about these
manifestations is available at the point of decision-mgkthis information often is not
part of an SE process [5]. Instead, such information has tedmrded in additional doc-
umentation which accompanies the process. Only recerfytethave begun to inter-
connect these artifacts at least partially [6]. The coreg@x and communication of de-
velopment experience is an issue not systematically aslelddsy SE. Figure 1 shows a
number of typical software engineering artifacts from ofiew projects. Superimposed

,—I

accepted closed
pied) m
° open l surveyed u

% \ L_J rejected
Surveyor Issue certificate \ :
\\
\
\
\

v
v
1

!
!
!
Administration Surveyor ':'
Survey
Send Borf
surveylist efform Ny]| - -
Survey e —
| - l’ \\
N e \
-~ Survey e =
[remaining] fopen] ’/ urvey
/
/
J
4
I’ -~
4 [}
[else] Document 24 1
[~ 1
Survey 4 1
Verify \/ e =
survey Survey - i
[surveyed] | ¥ -text:String]
\
A
1
1
1
1
1
1

Figurel. Examples of interrelated software engineering artifacts

onto these are the interrelationships between them (ddstes), which are neither ex-

plicit in the artifacts themselves nor handled by the cqoesling tools in a coherent and
global manner.

2.2. Design Phase Activities

One of the phases of typical SE processes is that of desigs.phlase gains much at-
tention because it is the point where reuse of developmgrrasnce can take place at a
high level.

The application of design patterns has become an importamtar of the set of de-
sign activities (figure 2). The reason for this is that sugbliaptions are well-understood
cases of software design. Design patterns also constitgitevéing body of knowledge
and best-practices. They can be used to preserve and cogateidesign experience.

These reasons—design patterns being well-understood amgldbmedium to com-
municate development experience—makes them a germane foesaeching software
development. We apply patterns in SE education as a firstbbjestudy towards a

model-based treatment of design patterns. As a first stépsidirection we treat specific
patterns (see figure 2).

pattern application

apply "composite"

Figure 2. Design use cases

design phase
activities

<< include >>

apply
zatt_em-based
esign

2.3. Software Engineering as a Content Management Activity

designer

We have studied how entities are represented by means aérdomianagement with
regard to SE [7]. Emphasis is put on the representation d@iesnthat cannot fully be
represented by data records alone, especially items thatsudbjective interpretations.
We refer to the research of such content management apptisatsconceptual content
managementCCM).

Based on the epistemic observation that neither contentomeepts exist in iso-
lation, CCM is based on the conjoint description of entitigspairs of content repre-
sentations and conceptual models. For pairs of these twatnaduce the notion adis-
sets Contentis presented by arbitrary multimedia docume@snceptsconsist of the
characteristicproperties of entitiesielationshipswith other assets which describe the
interdependencies of entities, atwhstraintson those characteristics and relationships.

The statements of the asset language allow the definitiosset @lasses, the creation
and manipulation of asset instances, and their retriew@heSexamples follow. For a
more complete description of the asset language see [8].

The following sketches asset definitions to model an SE gs&se

nodel Sof t war eEngi neeri ng
cl ass Sof t war eMbdel {
cont ent xm Docunent :org.w3c. dom Docunent
concept relationship classes : Cl assDescription*
rel ati onshi p sequences : Sequencex
constraint operationsDefined
sequences. obj Acts. negs <= cl asses. operati ons
and ... ; matching signatures

}
cl ass Sequence {
content topNode :org.w3c.dom El enent
concept relationship objActs : ObjectActivation=*

}

cl ass ObjectActivation ...

In the example, an XML document is the content of a gengodlt war eModel , pre-
sumably an XMI representation of UML diagrams. Relatedanses of further asset
classes are used to describe parts of the software modelses|asequences, etc.—in

more detail. Such an asset model can be created by the salmbaversion of an exist-
ing model for software in general, for example the Meta Otifecility (MOF, see [9]).

SE entities are described by the aforementioned charsiiteaittributes and rela-
tionships. Possible types of content handles and chaistaterare determined by an
embedded language which also is the target language of tdelrnompiler (currently
Java). More extensive use of the asset model is achieved plogimg constraints that
reflect the rules of the chosen SE process. In the examplesttiésnonstrated by a con-
straintoper at i onsDef i ned which in addition to the semantics of the UML ensures
that for each message sent according to a sequence diagrathadnvith a matching
signature is defined. When this constraint is violated, tireesponding instances can
either not be allowed at all, or—in case of an interactive@yst-the situation can be
brought to the attention of the user, e.g., on a list of issues

Since assets are especially designed to support subjeidive, asset classes as well
as instances can Ipersonalizedy means of redefinitions on an individual basis. Based
on the above definition ddof t war eMbdel a user can define

nodel MySof t war eEngi neeri ng
from Sof t war eEngi neeri ng i nport Softwar eMVbdel
cl ass Sof t war eMbdel {
concept relationship objects : ObjectDescriptionx*
} constrai nt objects.type <= cl asses

to explicitly refer to instances and to require that all dditfclasses have to be part of the
model. Anything that is not mentioned in the personalizatimains the same as in the
original definition.

For asset redefinitions there is a demandfoennesanddynamicsWe call aCCM
system{CCMS open if it allows users to define assets according to thefeatiinforma-
tion needs. Dynamics is the ability of a system to follow fgdeions of assets at runtime
without interrupting the users’ work.

To account for dynamics, our approach to CCM consists ofettmain contribu-
tions [10]: anasset languagéor the description of entities by both content and con-
ceptual expressions, modularized architecturéor evolving conceptual content man-
agement systems, ancheodel compilewhich translates expressions given in the asset
language into CCMSs without developer intervention.

3. Modeling Design Patterns

This section first gives a brief overview of design pattemgeneral and approaches to
create conceptual models for them. We then show how to mesédd patterns in CCM.

3.1. Design Patterns

The central idea of design patterns is to capture solutmnsdurring problems. In other
words, experiences gained by adept programmers are pua iicion that is suitable to
pass on these experiences to others, thereby eliminatengehd for them to relearn
the same knowledge “the hard way” by rediscovering them fpyactice. The exact
workings of such human learning mechanisms are currentiieuresearch [5]. This

capturing of short-cuts in learning experiences makegydgsatterns an important part
of SE curricula.

Existing work on design patterns (most prominently Gamnad, ¢1]) identifies four
central elements of a pattern: A name, a context in whichrittmapplied, the solution
it provides, and the consequences that arise from it. HowEgMealso acknowledge that
there is some subjectivity in design patterns. It is noted tihat is and what is not a
pattern depends on the individual user’s point of view. @nerk [11] also points out the
common definition of a design pattern being “a solution toabfam in a context” should
be extended to also include information about recurrenceedisas about teaching, to
provide the means to apply the solution to new situationg@ndtice that an opportunity
to do so has arisen in the first place. This is particularlyangmt with respect to teaching
patterns, where a definition of the design patterns is ndicgrit. We will describe in
section 4.3 how these aspects can be handled by CCMSs.

3.2. Pattern Description Languages

The need for a pattern description language arises in deargexts which can broadly
be divided into those that aim to support the task of creadbfgvare (e.g., by pattern
application) and those that inspect existing software (bygpattern discovery).

An early metamodel for pattern-based CASE tools in propasdd?2]. Based on
this metamodel, pattern instantiation is proposed, regativailable patterns to actual
application artifacts. UML also offers the collaboratioeechanism which can to some
extend be used to model design patterns. By itself this isveak a model for pattern-
based tools, which need additional means to capture seraaaty., OCL [13]. Yet other
tools let programmers work on different levels of abst@ttllowing them to work on
the source code as well as to instantiate patterns [14].

Metamodels are also employed to extract patterns fromiegisoftware. Corre-
sponding tools identify micro-architectures by modelidgsses in roles [15], or they
describe design pattern applications [16]. The descrigi@eared towards system sup-
ported application of the pattern. Taking this one stephentthere are approaches to
enforce the use of design patterns, e.g., [17].

All these approaches offer metamodels for design patteitis sgeveral different
foci, but there is a large overlap at their cores. Commonlyglear distinction between
pattern description and the general object-oriented madairis made. Our metamodel
for patterns is loosely similar to most existing models,diats to improve the separation
of general pattern description, object-oriented metarhadé specific pattern descrip-
tions for learning. It thus allows a fine-grained selectibstandard models from which
personal derivations are used to provide support for ataamning scenarios.

3.3. A CCM Model for Pattern-based Design

Design patterns are generally presented in a semi-stecctuanner. Gamma et al iden-
tify four essential parts of a pattern: name, problem, smiuind consequences [1]. Fur-
ther substructuring of these elements is not prescribexh though most authors try to
adopt a uniform heading structure. However, there are gpooaches that fully formal-

ize the description of design patterns such as [18]. Thigcavide well-defined seman-
tics for the descriptions as well as reasoning on them. Hewewuch formalizations are

Patterns

Pattern

<|ClassDescription >
N\ <
component composite| | leaf 3
CompositePattern
AssociationDescription Method
composition

CompositePattern SoftwareEngineering

Figure 3. Classes from different models are combined to model patterost & the model is omitted in this
figure for conciseness.

hardly useful in teaching patterns as learners need to geintaitive understanding to
be able to identify situations where the pattern is relevant

At the root of our conceptual model for patterns is a b&sitt er n class whose
concept offers the four core elements of patterreme—cont ext, sol uti on and
consequences—which are described as content in semi-structured doclgnent

nodel Patterns
class Pattern {

cont ent nane : String
pr obl em : StructuredDocunent
sol ution : StructuredDocunent

consequences : StructuredDocument

concept relationship col |l aborators :Cl assDescription
rel ati onship col | abor at or Aspect s : d assMenber

}

Furthermore, a CCMS allows users to model the patterns tdegree of specificity
they want. This can even mean that a class is created for @oéisgpattern alone if this
is required by the learning context. We demonstrate thils thié composite pattern:

cl ass ConpositePattern refines Pattern {

cont ent
nane :String := "Conposite"

concept
rel ati onship conponent : Cl assDescription
rel ati onship conposite : Cl assDescription
rel ationship | eaf : O assDescri ption

relationship conposi tion : Associ ati onDescri ption
constraint specializationl conposite.superC ass = conmponent
constraint specialization2 |eaf.superC ass = conponent
constrai nt aggregation conposition.type = conposition

and conposition. source.type = conposite

and conposition.target.type = base

The Composite patternis characterized by properties vaneheflected in the asset class
Conposi t ePat t er n. There are classes in three rolesinmponent , conposi t e,
and| eaf . Both conposi te and| eaf are subclasses afonponent as defined
by the constraintspeci al i zati onl andspeci al i zat i on2. Instances of the
class which fills theconposi t e role aggregate instances of the class filling the role
conponent (constraintaggr egati on). For this example assume that there is a
classAssoci at i onDescri pti on for UML associations with at least the three at-
tributes usedt y pe which characterizes the kind of association, as wed@sr ce and

t ar get which refer to assets describing the roles of the associdijeatts.

To capture patterapplicationsin a way that is meaningful to students, the pattern
applications have to be put into context of the whole soferststem they were made in.
The respective parts of the application domain of the sofwan be captured by using a
Sof t war eEngi neer i ng model (see section 2.2, [7]). By refining the general pattern
model and using the SE model, concrete patterns can be loegcfigure 3 gives an
overview of the an asset model of the Composite patterramiesss of this class are used
to describe concrete applications of the pattern:

nodel ConpositePatternApplication
f rom Sof t war eEngi neeri ng i nport

Cl assDescription, AssociationDescription
from Patterns inport ConpositePattern

| et graphi csPackage : = | ookfor Package {

name = "de.tuhh.sts.|tood.figures"
}
| et comnpositeApplication := create ConpositePattern {

problem:= ...

conposite : =

| ookfor C assDescription {
name = "Fi gureG oup"

package = graphi csPackage
}

conponent : =
| ookfor C assDescription {
name = "Figure"”

package = graphi csPackage
}
| eaf :=
| ookfor C assDescription {
name="Rect angl e"
package = graphi csPackage
}
conposition : =
| ookf or Association { source=conposite target=conponent }
}

An instance ofConposi t ePat t er n describes a pattern application by providing
values for all members. The content members inherited feamt er n are filled with

Prepare
System %
teacher

Purposeful
Action

i Mental

: model
student *

Discourse
| Discourse |

P33

group of
Shared students
understanding

Figure4. Learning cycle from the learner’s point of view.

structured documents describing problem, solution, andeguences. These could, e.g.,
closely correspond to the descriptions typically foundterature on patterns. The con-
ceptual descriptions of the pattern are also provided biewéng (through thé ookf or
command) appropriate parts of the existing software mddedse parts are then explic-
itly connected as an application of the composite pattern.

4. Pattern Learning Scenarios

The application of design patterns has become a commonkptet design activity.

Therefore, teaching the most useful patterns has becommeportant part of the educa-
tion or training of software developers. However, applyiragterns requires tacit knowl-
edge that cannot be studied on a purely theoretical basisn@®ads to learn to actively
apply patterns. In this section we argue that active legrisrsupported well by CCM

systems.

A pattern is more than a solution to a problem in a context.[EFpecially for
teaching purposes improved descriptions of design patee needed. Using the open
modeling of the CCM approach such improved descriptionsbeaformulated, in par-
ticular including content. By such combined descriptic®€M allows active learning
processes for design pattern application.

4.1. Active Learning Through Open Dynamic CCM

As is withessed by many taught courses, understanding rioautel applying the learnt
are essential parts of learning [19]. Constructionistsrpriet learning as the construc-
tion of knowledge and not its absorption [20]. Practicalleggpion facilitates the lasting
storage of information.

Figure 4 (inspired by [21]) depicts such an active way ofr@ay from the point of
view of a student. There are two levels, which differ in clusgs to the learner as well
as in speed of iteration. The inner cycle constitutes ad#igening. It is usually carried

out by one learner alone. The outer circle describes thesictien with others, learners
as well as teachers through discourse in the field of studyaasldared, group-based
understanding of it.

Active learning requires—as the name suggests—actions hystrein the field of
study. These actions will lead to results, which the leapseceives and understands to
be failures or advances. This can then be incorporatedhetaiental model of the field
of discourse and used in the next iteration.

Typical e-learning systems support a passive way of legrriihere are usually a
number of ways to present lessons to learners [22]. Thegictien of learner and system
is frequently limited to formal testing.

To take the system support beyond this, the system has tdd&aaapt to the par-
ticular needs of specific (groups of) learners. We refer iDdls personalization, which
happens at two levelspntentandstructurepersonalization. The former allows users to
adapt the content they work with to their own needs or viewthefworld. This hap-
pens without interfering with the work of other users, but #ystem needs to provide
facilities that allow the later exchange of personalizeatent between (groups of) users.
Structure personalization means that users are not cortfinthé schema provided for
the system, but can modify this schema to suit their needs.adpect is very important
in learning to reflect the level of the learner as well as thd fi¢ study. For more details
on personalization in e-learning applications see [3].

All activities indicated in the learning circle in figure 4eacovered by personal-
ization. It supports discourse through exchange of petsmubcontent and conceptual
models with a limited group of peer learners. Most impottanisers are enabled to
take action in the system itself and learn through the resfltheir action. They can
recombine artifacts to solve learning problems.

This allows an approach to e-learning in which learners tarcwirally rework or
even extend the subject matter. For example, a lesson gawitea given partial model
that the learners are to complete. In doing so, they applyt ey previously learned.
Thinning out the content is again achieved through pergatain (the left-out pieces
are not deleted globally but hidden in the personal view)ystem setup to support this
will be shown in section 4.3.

4.2. Teaching Pattern-oriented Design

This section applies the CCM approach to learning of desaitems. Particular regard
is given to the active dimension of learning.

To use CCM for learning in a field of study, the generic adtgtof the learning
cycle in figure 4 have to be backed with specific ones of theqgigants. Figure 5 shows
some use cases from which these activities can be deduceel algattern experpre-
pares case studies as examples or master solutionsp@ttexn learney or the expert
gives exercises to be solved by the learner. The person irotbef thepattern expert
can but does not have to be the teacher at the same time.

In the previous section it has been mentioned that a teaeimehand partial solu-
tions to learners. By means of personalization each leaaresolve exercises individu-
ally. Personalization furthermore allows change of emgstiesigns to try out modeling
alternatives.

Many times, learning begins at the teacher (in the uppetedycfigure 4) who—
in the case of CCM—perpares a system for the particular neetteedearners. This

view pattern
users

detect pattern
application
complete partial
descriptions
pattern
learner
apply patterns

pattern
expert

describe pattern

pattern
teacher

Figure5. Learning use cases

involves the setup of the general surroundings of the fieldgtodly as well as the for-
mulation of particular tasks. When teaching design pattetres general surroundings
are largely described by software engineering in geneta. tfEacher would thus pre-
load the system with a general software engineering modeti¢s 2.3) which forms a
mostly constant basis for the work on design patterns. Tisehais little personalization
to be expected on the software engineering model, but suslomaization is of course
possible.

Teaching design patterns requires rich descriptions [hXdection 3.3 asset models
for typical design pattern descriptions have been showse&an the software engineer-
ing model, the teacher can import models which describepstt Since these are the
field of study, heavy personalization is expected here. Pemoess of the model allows
the teacher to extend these models for teaching purposesarfaéizations made by the
teacher can lead to concrete tasks for students, for instahere some parts of a model
are deleted in the personalization and the task is to fill thated gaps.

Another possible task created through personalizationgsemario in which the
teacher provides a description of a concrete software asdifi to the students to detect
the use of patterns by creating personal instances of thepigte pattern applications.
Here only class diagrams are given, the learners deteetrpatpplications by capturing
the classes’ roles in (person&t t er n asset instances. More advanced students can
be asked to refactor the provided system description thrtlugapplication of additional
patterns where possible.

In both cases it is important to stress that while learnerskvadone or in small
groups they can consult with the other learners of theirgmor with the teacher as both
work in the same system. The system setup that is requirechteve this will be shown
in the next section.

System-based learning in general needs support from thensyautside the direct
field of study: a model of the learners, their advances in #id 6f study, and a match-
ing with appropriate materials come to mind. Though the almitensions made to the
pattern model by the teacher do not automatically lead tovgptete model of e-learning

they can be combined with general learning models [23] tmfaicomplete environment
of learning.

4.3. A CCMS for Teaching Patterns

In order to achieve dynamics, CCMSs are generated from assils (section 2.3) by a
model compiler [24]. On model changes—a personalizatignistéhe cases considered
here—a CCMS is dynamically modified to account for the changedel. Each mod-
ification preserves existing asset instances and maintaicis references to the public
model that has been personalized.

Dynamics of CCMSs is further enabled by an architecture sigiports evolu-
tion [8]. A CCMS consists of a set of cooperatiogmponentseach hosting assets of one
particular model. Components in turn are implementechogulesvhich offer a certain
functionality. The components’ functionality is providied modules working in concert.

Two particular kinds of modules used below atient modulesandmediation mod-
ules Client modules access third-party software such thatédces are accessible to
a CCMS. A typical example is a client module to map asset difivsi to a database for
asset persistence.

Mediation modules delegate requests to their two base resdgicording to a defin-
able strategy which implements a particular behavior. Rstaince, in a personalization
scenario existing asset definitions are stored alongs&legkrsonalized variants using
two different client modules. A mediation module providegieval of assets from both
modules, creation of personal assets in the personal ctiedule, and personalization
of public assets by copying an asset from a public client nettuthe personal one and
modifying the copy.

Through the generative approach a CCMS for the managemeuatiafrn descrip-
tions can be generated from the models presented in secB8o&G8neral requirements
for such a CCMS can be deduced from [25]. The ability to sesve ttoring system is
based on the consideration of both content and conceptud¢lsiin assets and on the
modeling openness.

Hosted content describing software systems can serve agemsional definition
of a design pattern by giving an abstract definition and bywvitg several applications,
counter examples, etc. Conceptual models point out thgulgsitterns that are visible
in content, for example, in a complete class diagram usedcasestudy. The dynamic
nature of CCMSs permits active learning processes as disduis the previous sections.
For example, students can improve given designs by intindymatterns. In doing they
understand how the respective pattern is applied in peddarthermore, personaliza-
tion allows to change definitions of patterns. This way stisl€an experience which
properties patterns have and why they are required.

A design pattern CCMS can be set up as a compound system wiukldés the
CCMS generated for an SE model like the one sketched in se2t®as a component.
Figure 6 shows an example of such a CCMS generated as a tusystem. This compo-
nent can be used independently in SE processes, whilempatscription components
manage the accompanying information on pattern appliestio

In the example of figure 6 an SE component is shown bystE&€ommunity’s Client
Module that accesses some third-party software, here a databasegement system
storing the SE asset definitions.

o

R

Supervisor
Access
Hub Module
for Learner
and Course Learner Access
Mediation Module
Learner «— Course

| Learner's Client Module | | Mediation Module

Course < Teacher |Teacher Access
Mediation Module

Teacher « SE Comm.

Course's Client Module Client Module] SE Community's
Client Module

Figure6. A Sample CCMS for E-learning Patterns

Based on the asset collections found in the SE componentcheea@an pre-
pare course material for an SE course using a teacher’'s gwmnpdy interaction
with the Teacher Accessnodule. Here a model like th@att er ns model from
section 3.3 is employed. Since thRatt er ns model imports definitions from the
Sof t war eEngi neer i ng model, the components of a teacher and the SE commu-
nity are connected throughMediation Module Teacher»> SE CommunityThis mod-
ule makes the general SE definitions available to the tegcb@mponent and merges
them with the personal asset definitions managed by thetdiedule. Thus it allows to
interrelate assets as discussed in section 3.3.

CCM components for courses are set up in a similar fashiohasetfor teachers.
Albeit the purpose differs: for courses the dynamics is ueddilor the materials which
a teacher prepared to the needs of a certain course. S§ifltsagre interrelated through
theMediation Module Course> Teachersuch that a teacher can navigate from an asset
presenting some design to a course to the more general assethich it has been
derived.

Participants of a course are equipped with a learner’s coemicaccessible via the
moduleLearner AccessSuch a component is an environment for active learningdin a
dition to the possibility to access the learning materia¢ppred for their course, learners
are equipped with a repository of their own. This way stusean create their own mod-
els and create personalized instances from given matefiails use of openness allows
learners, for instance, to solve problems and experimehttivéir solutions.

When students finally deliver the results of their work theyy publish their
modified asset models. Taking the personalization pathviarcls the modified models
are finally presented to the teacher who can then review tlEmstraints are checked
on every publication stage so that a student’s work will peated if it conflicts with the
general SE or pattern definitions.

Students usually do not only deliver a final solution. Onrthedy to creating it they
also will discuss intermediate results with teachers atidviestudents. The discussion

among students can take place in the course componentn&uds publish intermedi-
ate results to this component—at least if they meet all fowoaktraints—making them
visible to students of the same course. These studentseayftihh example, annotate the
proposed asset definitions.

Teachers, in addition to providing learning materialset#tke role of a supervisor
while students work on their tasks. This role is supportecbyadditional component
accessible vi&upervisor Acces3 his component does not maintain any additional con-
tent. Instead it allows a supervisor to take a look at bothntiag¢erials presented to a
course and the personalizations made by all participatirdests. This way a supervisor
can advise students by monitoring their progress whilergimedels can be inspected if
required through the access to the course component.

5. Summary and Outlook

We have shown that it is beneficial for teaching purposes tdehdesign patterns du-
alistically. This helps students to understand patternsidsy medial representation of
software design as well as a conceptual models pointinghmit particularities. Fur-
thermore schema personalization enables active learsiitgaiows learners to model
the subject under study in the most appropriate way. Sirhgaefits arise from instance
personalization where students are asked to completalpeotitent.

In future work it will be interesting to extend our conceptosodel of design pat-
terns to reach further into SE. It can then not only be usedeaching but will also be
applicable to software creation proper. In the area of iegraystems improving the re-
actions of the system to its users seems promising. The gjt@hnake learning systems
react smartly to student’s modeling decisions. A promisipgroach is to try to detect
common misconceptions with patterns. This way learnersiveanore directed feed-
back and do not need to consult their supervisor or fellowestts in oder to understand
the basics of patterns.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John VlissidBesign Patterns: Elements of
Reusable Object-Oriented Softwarkddison-Wesley Professional Computing Series. Addis@siéy
Publishing Company, New York, NY, 1994.

[2] lan Sommerville.Software EngineeringAddison-Wesley, 2000.

[3] Hans-Werner Sehring, Sebastian Bossung, and JoachiSchhidt. Active Learning By Personaliza-
tion - Lessons Learnt from Research in Conceptual Contemialg@ment. IiProceedings of the 1st In-
ternational Conference on Web Information Systems andibdadies pages 496-503. INSTICC Press
Miami, May 2005.

[4] Sebastian Bossung, Hans-Werner Sehring, Patrick Huqp,Joachim W. Schmidt. Open and Dynamic
Schema Evolution in Content-intensive Web ApplicationsPtaceedings of the Second International
Conference on Web Information Systems and Technolqmges 109—-116. INSTICC, INSTICC Press,
2006.

[5] Yann-Gél Guekéneuc, Stefan Monnier, and Giuliano Antoniol. Evaluating tUse of Design Patterns
during Program Comprehension — Experimental Settind?rbteedings of the 1st International Work-
shop in Design Pattern Theory and PractitEEE Computer Society Press, 2005.

[6] Iris Reinhartz-Berger. Conceptual Modeling of Struetand Behavior with UML — The Top Level
Object-Oriented Framework (TLOOF) Approach. Bmoceedings of the International Conference on
Conceptual Modeling - ER 2008olume 3716 oL NCS pages 1-15, 2005.

[71

8

[9]
[10]

(11]
(12]
(23]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

(25]

Sebastian Bossung, Hans-Werner Sehring, Michael SlamshJoachim W. Schmidt. Conceptual Con-
tent Management for Software Engineering Processe&dWfances in Databases and Information Sys-
tems: 9th East European Conference, ADBIS 200fime 3631 of.ecture Notes in Computer Science
page 309. Springer-Verlag, 2005.

Hans-Werner Sehring and Joachim W. Schmidt. Beyond B2ated1 An Asset Language for Conceptual
Content Management. Rroc. 8th East European Conference on Advances in Datatzaseiforma-
tion Systemsvolume 3255 ofNCS pages 99-112. Springer-Verlag, 2004.

Object Management Groupdeta Object Facility (MOF) Specificatigri.4.1 edition, July 2005.
Joachim W. Schmidt and Hans-Werner Sehring. Conceg@aoatent Modeling and Management: The
Rationale of an Asset Language. Proceedings of the International Andrei Ershov Memoriaih€o
ference, Perspectives of System Informatics, PSIVoRime 2890 oL NCS pages 469-493. Springer-
Verlag, 2003.

John Vlissides. Pattern Hatching: Design Patterns AppliedThe Software Pattern Series. Addison
Wesley Longman, 1998.

Bernd-Uwe Pagel and Mario Winter. Towards Patterndgiaools. InProceedings of the European
Conference on Pattern Languages of Programming and Comgpifi5, 1996.

Gerson Sunye, Alain Le Guennec, and Jean-Mareduel. Design Patterns Application in UML. In
ECOOR, pages 44-62, 2000.

Gert Florijn, Marco Meijers, and Pieter van Winsen. T8apport for Object-oriented Patterns. In
M. Aksit and S. Matsuoka, editor®roceedings of ECOOP '97 - Object-Oriented Programminghl1
EuropeanConferenceolume 1241 of_ecture Notes in Computer Scienpage 472. Springer, 1997.
Yann-Ga&l Guekéneuc, Houari A. Sahraoui, and Farouk Zaidi. Fingerprinfivesign Patterns. In
Proceedings of the 11th Working Conference on Reverse eagny (WCRE 2004)pages 172-181.
IEEE Computer Society, 2004.

Daniel Lucgdio, Alexandre Alvaro, Eduardo Santana de Almeida, and Wiatérancisco do Prado.
MVCASE Tool — Working with Design Patterns. Rroceedings of the Third Latin American Conference
on Pattern Languages of Programming (SugarLoafPLoP 2003)3.

Herve Albin-Amiot, Pierre Cointe, Yann-@h Gueheneuc, and Narendra Jussien. Instantiating and
Detecting Design Patterns: Putting Bits and Pieces TogethéASE pages 166-173. IEEE Computer
Society, 2001.

Tommi Mikkonen. Formalizing Design Patterns. IBSE '98: Proceedings of the 20th international
conference on Software engineerimmages 115-124, Washington, DC, USA, 1998. IEEE Computer
Society.

W.J. Clancy. A Tutorial on Situated Learning. Rroceedings of the International Conference on
Computers and Education995.

Ulrik Schroeder. Meta-Learning Functionality in ekeamg Systems. IrProceedings of the Inter-
national Conference on Advances in Infrastructure for Etatic Business, Education, Science, and
Medicine on the Interne2002.

Heidrun Allert, Christoph Richter, and Wolfgang Nejdlifelong Learning and Second-order Learning
Objects.British Journal of Educational Technolog$5(6):701-715, 2004.

Sissel Guttomsen Sahand Helmut Krueger. Learning Technologies with Multimedi2EE Multime-
dia, 7(3):40-51, 2000.

M. Derntl and R. Motschnig-Pitrik. Conceptual Modajiof Reusable Learning Scenarios for Person-
Centered e-Learning. IRroceedings of International Workshop for Interactive Qorter-Aided Learn-
ing (ICL'03). Kassel University Press, 2003.

Hans-Werner Sehring, Sebastian Bossung, and Joachifcivnidt. Content is Capricious: A Case
for Dynamic System Generation. In Yannis Manolopoulos, slavoPokorfy, and Timos Sellis, edi-
tors,Proceedings of Advances on Databases and Informationi8gsf®th East European Conference,
ADBIS 2006 volume 4152 of NCS pages 430-445. Springer-Verlag, 2006.

G. Meszaros and J. Doble. Metapatterns: A Pattern Laggdor Pattern Writing. Ihrid Pattern
Languages of Programming Conferendonticello, USA, 1996.

