
Pattern Repositories for Software
Engineering Education

Hans-Werner Sehring, Sebastian Bossung, Patrick Hupe,
Michael Skusa, and Joachim W. Schmidt

{hw.sehring,sebastian.bossung,pa.hupe,skusa,j.w.schmidt}@tuhh.de
Software Systems Institute (STS)

Hamburg University of Science and Technology (TUHH)

Abstract. Modern software engineering attacks its complexity problemsby apply-
ing well-understood development principles. In particular, the systematic adoption
of design patternscaused a significant improvement of software engineering and is
one of the most effective remedies for what was formerly called thesoftware crises.
Design patterns and their utilization constitute an increasing body of knowledge in
software engineering. Due to their regular structure, their orthogonal applicability
and the availability of meaningful examples design patterns can serve as an excel-
lent set of use cases for organizational memories, for software development tools
and for e-learning environments.
Patterns are defined and described on two levels [1]: by real-world examples—e.g.,
textual or graphical content on their principles, best practices, structure diagrams,
code etc.—and by conceptual models—e.g., on categories of application problems,
software solutions, deployment consequences etc. This intrinsically dualistic na-
ture of patterns makes them good candidates for conceptual content management
(CCM). In this paper we report on the application of the CCM approach to a repos-
itory for teaching and training in pattern-based software design as well as for the
support of the corresponding e-learning processes.

Keywords. Conceptual modeling, content management, design patterns, e-learning

1. Introduction and Motivation

The entire field of modern software engineering (SE) is a diverse and complex endeavor.
Many advances had to be made to master what we used to call the software crisis. One
important key to success was finally found in software patterns which introduced another
level of abstraction to software design processes and decreased the complexity of designs
considerably. Since their first publication in the early 90ies [1] design patterns (and the
idea of software patterns in general) have been quickly adopted and today are in wide-
spread use.

As modern software systems become ever larger and more complex most software
development paradigms agree that some planning-ahead is needed in order to success-
fully carry out a software development project [2]. While requirements for the appli-
cation under development are collected during an initial application analysis phase, the
subsequent design phase aims at a coarse design of the software. In this light, design



patterns are abstractions over pieces of software with shared design requirements thus
helping to exploit accumulated design experience.

Design patterns turn out to be essential pieces of knowledgefor software engineers
and, consequently, have to be covered by software engineering curricula. As the mere
awareness of a design pattern does not enable a student of software engineering to ap-
propriately apply it, the pragmatics of pattern applications should also be taught. This
can be achieved by providing pattern definitions together with best-practice pattern ap-
plications and by enabling students to relate, publicize and discuss their personal pattern
applications in such definitional contexts. Students can thus actively participate in the
design process, resulting in an improved learning experience.

In previous projects we have used our Conceptual Content Management (CCM) ap-
proach to provide extensional concept definitions and to embed such CCM material into
learning environments—albeit in political iconography [3]or art history applications [4].
In this paper we sketch a conceptual model for design patterns and show how previous
experiences with active learning can be carried over to SE. We discuss how existing work
on patterns (e.g., [1]) can be represented, communicated, and applied by CCM.

The remainder of this paper is organized as follows: We commence with an overview
of requirements to SE tools and their relationships with content management in section 2.
In section 3 we provide a conceptual model suitable for describing patterns in learning
systems and also report on some related work. Section 4 describes pattern learning sce-
narios with particular emphasis on active learning in conceptual content management
systems. We conclude with a summary and outlook in section 5.

2. Requirements for Software Engineering Tools

As a basis for discussion this section contains some remarkson SE processes, in particu-
lar on the pattern-based design of software, and we argue that SE—especially the aspect
of conserving design knowledge—shares properties of advanced content management
tasks.

2.1. Software Engineering Processes

A typical SE process consists of several phases: analysis, design, implementation and
test (e.g., [2]). During these phases, numerous artifacts are created. These artifacts stem
from different models and coexist for various reasons: different levels of abstraction,
perspectives, revisions, or alternate representations.

Typically, artifacts of later phases are created from higher-level artifacts of earlier
phases, but dependencies are not linear and difficult to trace: Diverse analysis require-
ments, platform constraints and modeling acts such as architectural decisions, pattern
applications, etc. manifest themselves in later artifacts. While the knowledge about these
manifestations is available at the point of decision-making, this information often is not
part of an SE process [5]. Instead, such information has to berecorded in additional doc-
umentation which accompanies the process. Only recently efforts have begun to inter-
connect these artifacts at least partially [6]. The conservation and communication of de-
velopment experience is an issue not systematically addressed by SE. Figure 1 shows a
number of typical software engineering artifacts from one of our projects. Superimposed



Figure 1. Examples of interrelated software engineering artifacts

onto these are the interrelationships between them (dashedlines), which are neither ex-
plicit in the artifacts themselves nor handled by the corresponding tools in a coherent and
global manner.

2.2. Design Phase Activities

One of the phases of typical SE processes is that of design. This phase gains much at-
tention because it is the point where reuse of development experience can take place at a
high level.

The application of design patterns has become an important member of the set of de-
sign activities (figure 2). The reason for this is that such applications are well-understood
cases of software design. Design patterns also constitute agrowing body of knowledge
and best-practices. They can be used to preserve and communicate design experience.

These reasons—design patterns being well-understood and being a medium to com-
municate development experience—makes them a germane meansfor teaching software
development. We apply patterns in SE education as a first object of study towards a
model-based treatment of design patterns. As a first step in this direction we treat specific
patterns (see figure 2).



Figure 2. Design use cases

2.3. Software Engineering as a Content Management Activity

We have studied how entities are represented by means of content management with
regard to SE [7]. Emphasis is put on the representation of entities that cannot fully be
represented by data records alone, especially items that have subjective interpretations.
We refer to the research of such content management applications asconceptual content
management(CCM).

Based on the epistemic observation that neither content norconcepts exist in iso-
lation, CCM is based on the conjoint description of entitiesby pairs of content repre-
sentations and conceptual models. For pairs of these two we introduce the notion ofas-
sets. Contentis presented by arbitrary multimedia documents.Conceptsconsist of the
characteristicproperties of entities,relationshipswith other assets which describe the
interdependencies of entities, andconstraintson those characteristics and relationships.

The statements of the asset language allow the definition of asset classes, the creation
and manipulation of asset instances, and their retrieval. Some examples follow. For a
more complete description of the asset language see [8].

The following sketches asset definitions to model an SE processes:

model SoftwareEngineering

class SoftwareModel {

content xmiDocument :org.w3c.dom.Document

concept relationship classes :ClassDescription*
relationship sequences :Sequence*
constraint operationsDefined
sequences.objActs.msgs <= classes.operations
and . . . ; matching signatures

.

.

.

}

class Sequence {

content topNode :org.w3c.dom.Element

concept relationship objActs :ObjectActivation*
}

class ObjectActivation ...

In the example, an XML document is the content of a generalSoftwareModel, pre-
sumably an XMI representation of UML diagrams. Related instances of further asset
classes are used to describe parts of the software model—classes, sequences, etc.—in



more detail. Such an asset model can be created by the structural conversion of an exist-
ing model for software in general, for example the Meta Object Facility (MOF, see [9]).

SE entities are described by the aforementioned characteristic attributes and rela-
tionships. Possible types of content handles and characteristics are determined by an
embedded language which also is the target language of the model compiler (currently
Java). More extensive use of the asset model is achieved by employing constraints that
reflect the rules of the chosen SE process. In the example thisis demonstrated by a con-
straintoperationsDefined which in addition to the semantics of the UML ensures
that for each message sent according to a sequence diagram a method with a matching
signature is defined. When this constraint is violated, the corresponding instances can
either not be allowed at all, or—in case of an interactive system—the situation can be
brought to the attention of the user, e.g., on a list of issues.

Since assets are especially designed to support subjectiveviews, asset classes as well
as instances can bepersonalizedby means of redefinitions on an individual basis. Based
on the above definition ofSoftwareModel a user can define

model MySoftwareEngineering

from SoftwareEngineering import SoftwareModel

class SoftwareModel {

concept relationship objects :ObjectDescription*
constraint objects.type <= classes

}

to explicitly refer to instances and to require that all of their classes have to be part of the
model. Anything that is not mentioned in the personalization remains the same as in the
original definition.

For asset redefinitions there is a demand foropennessanddynamics. We call aCCM
system(CCMS) open if it allows users to define assets according to their current informa-
tion needs. Dynamics is the ability of a system to follow redefinitions of assets at runtime
without interrupting the users’ work.

To account for dynamics, our approach to CCM consists of three main contribu-
tions [10]: anasset languagefor the description of entities by both content and con-
ceptual expressions, amodularized architecturefor evolving conceptual content man-
agement systems, and amodel compilerwhich translates expressions given in the asset
language into CCMSs without developer intervention.

3. Modeling Design Patterns

This section first gives a brief overview of design patterns in general and approaches to
create conceptual models for them. We then show how to model design patterns in CCM.

3.1. Design Patterns

The central idea of design patterns is to capture solutions to recurring problems. In other
words, experiences gained by adept programmers are put intoa form that is suitable to
pass on these experiences to others, thereby eliminating the need for them to relearn
the same knowledge “the hard way” by rediscovering them frompractice. The exact
workings of such human learning mechanisms are currently under research [5]. This



capturing of short-cuts in learning experiences makes design patterns an important part
of SE curricula.

Existing work on design patterns (most prominently Gamma etal, [1]) identifies four
central elements of a pattern: A name, a context in which it can be applied, the solution
it provides, and the consequences that arise from it. However, [1] also acknowledge that
there is some subjectivity in design patterns. It is noted that what is and what is not a
pattern depends on the individual user’s point of view. Other work [11] also points out the
common definition of a design pattern being “a solution to a problem in a context” should
be extended to also include information about recurrence aswell as about teaching, to
provide the means to apply the solution to new situations andto notice that an opportunity
to do so has arisen in the first place. This is particularly important with respect to teaching
patterns, where a definition of the design patterns is not sufficient. We will describe in
section 4.3 how these aspects can be handled by CCMSs.

3.2. Pattern Description Languages

The need for a pattern description language arises in several contexts which can broadly
be divided into those that aim to support the task of creatingsoftware (e.g., by pattern
application) and those that inspect existing software (e.g., by pattern discovery).

An early metamodel for pattern-based CASE tools in proposedin [12]. Based on
this metamodel, pattern instantiation is proposed, relating available patterns to actual
application artifacts. UML also offers the collaboration mechanism which can to some
extend be used to model design patterns. By itself this is tooweak a model for pattern-
based tools, which need additional means to capture semantics, e.g., OCL [13]. Yet other
tools let programmers work on different levels of abstraction allowing them to work on
the source code as well as to instantiate patterns [14].

Metamodels are also employed to extract patterns from existing software. Corre-
sponding tools identify micro-architectures by modeling classes in roles [15], or they
describe design pattern applications [16]. The description is geared towards system sup-
ported application of the pattern. Taking this one step further, there are approaches to
enforce the use of design patterns, e.g., [17].

All these approaches offer metamodels for design patterns with several different
foci, but there is a large overlap at their cores. Commonly noclear distinction between
pattern description and the general object-oriented metamodel is made. Our metamodel
for patterns is loosely similar to most existing models, butaims to improve the separation
of general pattern description, object-oriented metamodel and specific pattern descrip-
tions for learning. It thus allows a fine-grained selection of standard models from which
personal derivations are used to provide support for activelearning scenarios.

3.3. A CCM Model for Pattern-based Design

Design patterns are generally presented in a semi-structured manner. Gamma et al iden-
tify four essential parts of a pattern: name, problem, solution and consequences [1]. Fur-
ther substructuring of these elements is not prescribed, even though most authors try to
adopt a uniform heading structure. However, there are also approaches that fully formal-
ize the description of design patterns such as [18]. This canprovide well-defined seman-
tics for the descriptions as well as reasoning on them. However, such formalizations are



Figure 3. Classes from different models are combined to model patterns. Most of the model is omitted in this
figure for conciseness.

hardly useful in teaching patterns as learners need to gain an intuitive understanding to
be able to identify situations where the pattern is relevant.

At the root of our conceptual model for patterns is a basicPattern class whose
concept offers the four core elements of patterns:name—context, solution and
consequences—which are described as content in semi-structured documents.

model Patterns
class Pattern {

content name : String
problem : StructuredDocument
solution : StructuredDocument
consequences : StructuredDocument

concept relationship collaborators :ClassDescription
relationship collaboratorAspects :ClassMember

}

Furthermore, a CCMS allows users to model the patterns to anydegree of specificity
they want. This can even mean that a class is created for one specific pattern alone if this
is required by the learning context. We demonstrate this with the composite pattern:

class CompositePattern refines Pattern {

content

name :String := "Composite"

concept

relationship component :ClassDescription

relationship composite :ClassDescription

relationship leaf :ClassDescription

relationship composition :AssociationDescription

constraint specialization1 composite.superClass = component

constraint specialization2 leaf.superClass = component

constraint aggregation composition.type = composition

and composition.source.type = composite

and composition.target.type = base
.

.

.

}



The Composite pattern is characterized by properties whichare reflected in the asset class
CompositePattern. There are classes in three roles:component, composite,
and leaf. Both composite and leaf are subclasses ofcomponent as defined
by the constraintsspecialization1 andspecialization2. Instances of the
class which fills thecomposite role aggregate instances of the class filling the role
component (constraintaggregation). For this example assume that there is a
classAssociationDescription for UML associations with at least the three at-
tributes used:type which characterizes the kind of association, as well assource and
target which refer to assets describing the roles of the associatedobjects.

To capture patternapplicationsin a way that is meaningful to students, the pattern
applications have to be put into context of the whole software system they were made in.
The respective parts of the application domain of the software can be captured by using a
SoftwareEngineering model (see section 2.2, [7]). By refining the general pattern
model and using the SE model, concrete patterns can be described. Figure 3 gives an
overview of the an asset model of the Composite pattern. Instances of this class are used
to describe concrete applications of the pattern:

model CompositePatternApplication

from SoftwareEngineering import

ClassDescription, AssociationDescription

from Patterns import CompositePattern

let graphicsPackage := lookfor Package {

name = "de.tuhh.sts.ltood.figures"

}

let compositeApplication := create CompositePattern {

problem := ...
.

.

.

composite :=

lookfor ClassDescription {

name = "FigureGroup"

package = graphicsPackage

}

component :=

lookfor ClassDescription {

name = "Figure"

package = graphicsPackage

}

leaf :=

lookfor ClassDescription {

name="Rectangle"

package = graphicsPackage

}

composition :=

lookfor Association { source=composite target=component }

}

An instance ofCompositePattern describes a pattern application by providing
values for all members. The content members inherited fromPattern are filled with



Figure 4. Learning cycle from the learner’s point of view.

structured documents describing problem, solution, and consequences. These could, e.g.,
closely correspond to the descriptions typically found in literature on patterns. The con-
ceptual descriptions of the pattern are also provided by retrieving (through thelookfor
command) appropriate parts of the existing software model.These parts are then explic-
itly connected as an application of the composite pattern.

4. Pattern Learning Scenarios

The application of design patterns has become a commonly accepted design activity.
Therefore, teaching the most useful patterns has become an important part of the educa-
tion or training of software developers. However, applyingpatterns requires tacit knowl-
edge that cannot be studied on a purely theoretical basis. One needs to learn to actively
apply patterns. In this section we argue that active learning is supported well by CCM
systems.

A pattern is more than a solution to a problem in a context [11]. Especially for
teaching purposes improved descriptions of design patterns are needed. Using the open
modeling of the CCM approach such improved descriptions canbe formulated, in par-
ticular including content. By such combined descriptions,CCM allows active learning
processes for design pattern application.

4.1. Active Learning Through Open Dynamic CCM

As is witnessed by many taught courses, understanding content and applying the learnt
are essential parts of learning [19]. Constructionists interpret learning as the construc-
tion of knowledge and not its absorption [20]. Practical application facilitates the lasting
storage of information.

Figure 4 (inspired by [21]) depicts such an active way of learning from the point of
view of a student. There are two levels, which differ in closeness to the learner as well
as in speed of iteration. The inner cycle constitutes activelearning. It is usually carried



out by one learner alone. The outer circle describes the interaction with others, learners
as well as teachers through discourse in the field of study anda shared, group-based
understanding of it.

Active learning requires—as the name suggests—actions by theuser in the field of
study. These actions will lead to results, which the learnerperceives and understands to
be failures or advances. This can then be incorporated into the mental model of the field
of discourse and used in the next iteration.

Typical e-learning systems support a passive way of learning: There are usually a
number of ways to present lessons to learners [22]. The interaction of learner and system
is frequently limited to formal testing.

To take the system support beyond this, the system has to be able to adapt to the par-
ticular needs of specific (groups of) learners. We refer to this as personalization, which
happens at two levels:contentandstructurepersonalization. The former allows users to
adapt the content they work with to their own needs or views ofthe world. This hap-
pens without interfering with the work of other users, but the system needs to provide
facilities that allow the later exchange of personalized content between (groups of) users.
Structure personalization means that users are not confinedto the schema provided for
the system, but can modify this schema to suit their needs. This aspect is very important
in learning to reflect the level of the learner as well as the field of study. For more details
on personalization in e-learning applications see [3].

All activities indicated in the learning circle in figure 4 are covered by personal-
ization. It supports discourse through exchange of personalized content and conceptual
models with a limited group of peer learners. Most importantly, users are enabled to
take action in the system itself and learn through the results of their action. They can
recombine artifacts to solve learning problems.

This allows an approach to e-learning in which learners can structurally rework or
even extend the subject matter. For example, a lesson can start with a given partial model
that the learners are to complete. In doing so, they apply what they previously learned.
Thinning out the content is again achieved through personalization (the left-out pieces
are not deleted globally but hidden in the personal view). A system setup to support this
will be shown in section 4.3.

4.2. Teaching Pattern-oriented Design

This section applies the CCM approach to learning of design patterns. Particular regard
is given to the active dimension of learning.

To use CCM for learning in a field of study, the generic activities of the learning
cycle in figure 4 have to be backed with specific ones of the participants. Figure 5 shows
some use cases from which these activities can be deduced. Here apattern expertpre-
pares case studies as examples or master solutions for apattern learner, or the expert
gives exercises to be solved by the learner. The person in therole of thepattern expert
can but does not have to be the teacher at the same time.

In the previous section it has been mentioned that a teacher can hand partial solu-
tions to learners. By means of personalization each learnercan solve exercises individu-
ally. Personalization furthermore allows change of existing designs to try out modeling
alternatives.

Many times, learning begins at the teacher (in the upper cycle in figure 4) who—
in the case of CCM—perpares a system for the particular needs of the learners. This



Figure 5. Learning use cases

involves the setup of the general surroundings of the field ofstudy as well as the for-
mulation of particular tasks. When teaching design patterns, the general surroundings
are largely described by software engineering in general. The teacher would thus pre-
load the system with a general software engineering model (section 2.3) which forms a
mostly constant basis for the work on design patterns. Thereis thus little personalization
to be expected on the software engineering model, but such personalization is of course
possible.

Teaching design patterns requires rich descriptions [11].In section 3.3 asset models
for typical design pattern descriptions have been shown. Based on the software engineer-
ing model, the teacher can import models which describe patterns. Since these are the
field of study, heavy personalization is expected here. The openness of the model allows
the teacher to extend these models for teaching purposes. Personalizations made by the
teacher can lead to concrete tasks for students, for instance where some parts of a model
are deleted in the personalization and the task is to fill the created gaps.

Another possible task created through personalization is ascenario in which the
teacher provides a description of a concrete software and itis up to the students to detect
the use of patterns by creating personal instances of the appropriate pattern applications.
Here only class diagrams are given, the learners detect pattern applications by capturing
the classes’ roles in (personal)Pattern asset instances. More advanced students can
be asked to refactor the provided system description through the application of additional
patterns where possible.

In both cases it is important to stress that while learners work alone or in small
groups they can consult with the other learners of their course or with the teacher as both
work in the same system. The system setup that is required to achieve this will be shown
in the next section.

System-based learning in general needs support from the system outside the direct
field of study: a model of the learners, their advances in the field of study, and a match-
ing with appropriate materials come to mind. Though the above extensions made to the
pattern model by the teacher do not automatically lead to a complete model of e-learning



they can be combined with general learning models [23] to form a complete environment
of learning.

4.3. A CCMS for Teaching Patterns

In order to achieve dynamics, CCMSs are generated from assetmodels (section 2.3) by a
model compiler [24]. On model changes—a personalization step in the cases considered
here—a CCMS is dynamically modified to account for the changedmodel. Each mod-
ification preserves existing asset instances and maintainsback references to the public
model that has been personalized.

Dynamics of CCMSs is further enabled by an architecture thatsupports evolu-
tion [8]. A CCMS consists of a set of cooperatingcomponents, each hosting assets of one
particular model. Components in turn are implemented bymoduleswhich offer a certain
functionality. The components’ functionality is providedby modules working in concert.

Two particular kinds of modules used below areclient modulesandmediation mod-
ules. Client modules access third-party software such that the services are accessible to
a CCMS. A typical example is a client module to map asset definitions to a database for
asset persistence.

Mediation modules delegate requests to their two base modules according to a defin-
able strategy which implements a particular behavior. For instance, in a personalization
scenario existing asset definitions are stored alongside their personalized variants using
two different client modules. A mediation module provides retrieval of assets from both
modules, creation of personal assets in the personal clientmodule, and personalization
of public assets by copying an asset from a public client module to the personal one and
modifying the copy.

Through the generative approach a CCMS for the management ofpattern descrip-
tions can be generated from the models presented in section 3.3. General requirements
for such a CCMS can be deduced from [25]. The ability to serve as a tutoring system is
based on the consideration of both content and conceptual models in assets and on the
modeling openness.

Hosted content describing software systems can serve as an extensional definition
of a design pattern by giving an abstract definition and by showing several applications,
counter examples, etc. Conceptual models point out the design patterns that are visible
in content, for example, in a complete class diagram used as acase study. The dynamic
nature of CCMSs permits active learning processes as discussed in the previous sections.
For example, students can improve given designs by introducing patterns. In doing they
understand how the respective pattern is applied in practice. Furthermore, personaliza-
tion allows to change definitions of patterns. This way students can experience which
properties patterns have and why they are required.

A design pattern CCMS can be set up as a compound system which includes the
CCMS generated for an SE model like the one sketched in section 2.3 as a component.
Figure 6 shows an example of such a CCMS generated as a tutoring system. This compo-
nent can be used independently in SE processes, while pattern description components
manage the accompanying information on pattern applications.

In the example of figure 6 an SE component is shown by theSE Community’s Client
Module that accesses some third-party software, here a database management system
storing the SE asset definitions.



Figure 6. A Sample CCMS for E-learning Patterns

Based on the asset collections found in the SE component a teacher can pre-
pare course material for an SE course using a teacher’s component by interaction
with the Teacher Accessmodule. Here a model like thePatterns model from
section 3.3 is employed. Since thePatterns model imports definitions from the
SoftwareEngineering model, the components of a teacher and the SE commu-
nity are connected through aMediation Module Teacher↔ SE Community. This mod-
ule makes the general SE definitions available to the teacher’s component and merges
them with the personal asset definitions managed by the client module. Thus it allows to
interrelate assets as discussed in section 3.3.

CCM components for courses are set up in a similar fashion as those for teachers.
Albeit the purpose differs: for courses the dynamics is usedto tailor the materials which
a teacher prepared to the needs of a certain course. Still, assets are interrelated through
theMediation Module Course↔ Teachersuch that a teacher can navigate from an asset
presenting some design to a course to the more general asset from which it has been
derived.

Participants of a course are equipped with a learner’s component accessible via the
moduleLearner Access. Such a component is an environment for active learning. In ad-
dition to the possibility to access the learning materials prepared for their course, learners
are equipped with a repository of their own. This way students can create their own mod-
els and create personalized instances from given materials. This use of openness allows
learners, for instance, to solve problems and experiment with their solutions.

When students finally deliver the results of their work they simply publish their
modified asset models. Taking the personalization path backwards the modified models
are finally presented to the teacher who can then review them.Constraints are checked
on every publication stage so that a student’s work will be rejected if it conflicts with the
general SE or pattern definitions.

Students usually do not only deliver a final solution. On their way to creating it they
also will discuss intermediate results with teachers and fellow students. The discussion



among students can take place in the course component. Students can publish intermedi-
ate results to this component—at least if they meet all formalconstraints—making them
visible to students of the same course. These students can then, for example, annotate the
proposed asset definitions.

Teachers, in addition to providing learning materials, take the role of a supervisor
while students work on their tasks. This role is supported byan additional component
accessible viaSupervisor Access. This component does not maintain any additional con-
tent. Instead it allows a supervisor to take a look at both thematerials presented to a
course and the personalizations made by all participating students. This way a supervisor
can advise students by monitoring their progress while given models can be inspected if
required through the access to the course component.

5. Summary and Outlook

We have shown that it is beneficial for teaching purposes to model design patterns du-
alistically. This helps students to understand patterns byrich medial representation of
software design as well as a conceptual models pointing out their particularities. Fur-
thermore schema personalization enables active learning as it allows learners to model
the subject under study in the most appropriate way. Similarbenefits arise from instance
personalization where students are asked to complete partial content.

In future work it will be interesting to extend our conceptual model of design pat-
terns to reach further into SE. It can then not only be used forteaching but will also be
applicable to software creation proper. In the area of learning systems improving the re-
actions of the system to its users seems promising. The goal is to make learning systems
react smartly to student’s modeling decisions. A promisingapproach is to try to detect
common misconceptions with patterns. This way learners receive more directed feed-
back and do not need to consult their supervisor or fellow students in oder to understand
the basics of patterns.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1994.

[2] Ian Sommerville.Software Engineering. Addison-Wesley, 2000.
[3] Hans-Werner Sehring, Sebastian Bossung, and Joachim W.Schmidt. Active Learning By Personaliza-

tion - Lessons Learnt from Research in Conceptual Content Management. InProceedings of the 1st In-
ternational Conference on Web Information Systems and Technologies, pages 496–503. INSTICC Press
Miami, May 2005.

[4] Sebastian Bossung, Hans-Werner Sehring, Patrick Hupe,and Joachim W. Schmidt. Open and Dynamic
Schema Evolution in Content-intensive Web Applications. InProceedings of the Second International
Conference on Web Information Systems and Technologies, pages 109–116. INSTICC, INSTICC Press,
2006.

[5] Yann-Gäel Gúeh́eneuc, Stefan Monnier, and Giuliano Antoniol. Evaluating the Use of Design Patterns
during Program Comprehension – Experimental Setting. InProceedings of the 1st International Work-
shop in Design Pattern Theory and Practice. IEEE Computer Society Press, 2005.

[6] Iris Reinhartz-Berger. Conceptual Modeling of Structure and Behavior with UML – The Top Level
Object-Oriented Framework (TLOOF) Approach. InProceedings of the International Conference on
Conceptual Modeling - ER 2005, volume 3716 ofLNCS, pages 1–15, 2005.



[7] Sebastian Bossung, Hans-Werner Sehring, Michael Skusa, and Joachim W. Schmidt. Conceptual Con-
tent Management for Software Engineering Processes. InAdvances in Databases and Information Sys-
tems: 9th East European Conference, ADBIS 2005, volume 3631 ofLecture Notes in Computer Science,
page 309. Springer-Verlag, 2005.

[8] Hans-Werner Sehring and Joachim W. Schmidt. Beyond Databases: An Asset Language for Conceptual
Content Management. InProc. 8th East European Conference on Advances in Databasesand Informa-
tion Systems, volume 3255 ofLNCS, pages 99–112. Springer-Verlag, 2004.

[9] Object Management Group.Meta Object Facility (MOF) Specification, 1.4.1 edition, July 2005.
[10] Joachim W. Schmidt and Hans-Werner Sehring. ConceptualContent Modeling and Management: The

Rationale of an Asset Language. InProceedings of the International Andrei Ershov Memorial Con-
ference, Perspectives of System Informatics, PSI ’03, volume 2890 ofLNCS, pages 469–493. Springer-
Verlag, 2003.

[11] John Vlissides. Pattern Hatching: Design Patterns Applied. The Software Pattern Series. Addison
Wesley Longman, 1998.

[12] Bernd-Uwe Pagel and Mario Winter. Towards Pattern-Based Tools. InProceedings of the European
Conference on Pattern Languages of Programming and Computing ’96, 1996.

[13] Gerson Sunye, Alain Le Guennec, and Jean-Marc Jéźequel. Design Patterns Application in UML. In
ECOOP, pages 44–62, 2000.

[14] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool Support for Object-oriented Patterns. In
M. Aksit and S. Matsuoka, editors,Proceedings of ECOOP ’97 - Object-Oriented Programming: 11th
EuropeanConference, volume 1241 ofLecture Notes in Computer Science, page 472. Springer, 1997.

[15] Yann-Gäel Gúeh́eneuc, Houari A. Sahraoui, and Farouk Zaidi. Fingerprinting Design Patterns. In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE 2004), pages 172–181.
IEEE Computer Society, 2004.

[16] Daniel Lucŕedio, Alexandre Alvaro, Eduardo Santana de Almeida, and Antonio Francisco do Prado.
MVCASE Tool – Working with Design Patterns. InProceedings of the Third Latin American Conference
on Pattern Languages of Programming (SugarLoafPLoP 2003), 2003.

[17] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Gúeh́eneuc, and Narendra Jussien. Instantiating and
Detecting Design Patterns: Putting Bits and Pieces Together. In ASE, pages 166–173. IEEE Computer
Society, 2001.

[18] Tommi Mikkonen. Formalizing Design Patterns. InICSE ’98: Proceedings of the 20th international
conference on Software engineering, pages 115–124, Washington, DC, USA, 1998. IEEE Computer
Society.

[19] W.J. Clancy. A Tutorial on Situated Learning. InProceedings of the International Conference on
Computers and Education, 1995.

[20] Ulrik Schroeder. Meta-Learning Functionality in eLearning Systems. InProceedings of the Inter-
national Conference on Advances in Infrastructure for Electronic Business, Education, Science, and
Medicine on the Internet, 2002.

[21] Heidrun Allert, Christoph Richter, and Wolfgang Nejdl. Lifelong Learning and Second-order Learning
Objects.British Journal of Educational Technology, 35(6):701–715, 2004.

[22] Sissel Guttomsen Schär and Helmut Krueger. Learning Technologies with Multimedia. IEEE Multime-
dia, 7(3):40–51, 2000.

[23] M. Derntl and R. Motschnig-Pitrik. Conceptual Modeling of Reusable Learning Scenarios for Person-
Centered e-Learning. InProceedings of International Workshop for Interactive Computer-Aided Learn-
ing (ICL’03). Kassel University Press, 2003.

[24] Hans-Werner Sehring, Sebastian Bossung, and Joachim W. Schmidt. Content is Capricious: A Case
for Dynamic System Generation. In Yannis Manolopoulos, Jaroslav Pokorńy, and Timos Sellis, edi-
tors,Proceedings of Advances on Databases and Information Systems: 10th East European Conference,
ADBIS 2006, volume 4152 ofLNCS, pages 430–445. Springer-Verlag, 2006.

[25] G. Meszaros and J. Doble. Metapatterns: A Pattern Language for Pattern Writing. InThrid Pattern
Languages of Programming Conference, Monticello, USA, 1996.


