
Conceptual Content Management

for Software Engineering Processes

Sebastian Bossung, Hans-Werner Sehring, Michael Skusa, and
Joachim W. Schmidt

{sebastian.bossung,hw.sehring,skusa,j.w.schmidt}@tu-harburg.de
Software Technology and Systems Institute (STS)

Hamburg University of Science and Technology (TUHH)

Abstract. A major application area of information systems technology
and multimedia content management is that of support systems for engi-
neering processes. This includes the particularly important area of soft-
ware engineering. Effective support of software engineering processes re-
quires large amounts of content (texts, diagrams, code, data, executables
etc.) from different conceptual domains. The term “software crisis” dis-
appeared gradually when content modelling and management addressed
domains from application analysis and system design in addition to the
sheer computational code domain.
In this paper we introduce an innovative conceptual content model and
apply it in support of software engineering processes and their artefacts.
We base our approach on the core model of the computational domain
which abstracts computational content (bodies of function code) by the
computational concept of signatures (lists of typed function parameters).
We generalise this functional abstraction model beyond the computa-
tional domain by introducing the notion of asset abstraction which mod-
els entities domain-independently by general content-concept pairs. We
introduce an asset language and discuss the essentials of an asset system
implementation.
In the application part of the paper we argue that software engineering
can be substantially simplified by modelling SE entities from all the
domains involved in an SE process homogeneously in an asset-oriented
approach—entities ranging from application domains over intermediate
architectural and design domains down to the computational domain.
Furthermore, we discuss how the mappings between such domains can be
substantially supported by services based on asset-oriented information
systems.

1 Introduction: Content Management for Software

Engineering

Heavy demands for data modelling and content management support dominate
all kinds of engineering processes and are the major reasons for the ongoing com-
mercial and scientific success of database technology. A wide variety of domain-
specific data and content models has been developed and applied to computer-
aided engineering environments.

An engineering area of specific interest and challenge to computer scientists
is their home ground of software engineering (SE) (e.g., [26]). SE processes are
particularly demanding since they span a wide variety of domains ranging from
application entities in the analysis phase via intermediate entities required for
system design and architecture down to computational entities for software im-
plementation and execution.

The content models involved in SE processes usually include separate models
for texts, diagrams, code, data, executables etc. This heterogeneity of the mod-
els causes much of the complexity of SE processes. SE environments, instead
of providing homogeneous working support, are often subdivided into disparate
tool contexts for diverse domains and their preferred representations: texts for
analysis, diagrams for designs, code for executables, etc. This subdivision puts
severe limitations particularly on those process steps which have to span sev-
eral SE phases over various domains such as mapping steps, coherence tests or
simple search and navigation tasks. This situation is only partially improved by
approaches like those presented, e.g., in [4, 27].

Consequently, we see a demand for a conceptual content model which can be
homogeneously applied to all the domains involved in SE processes: to entities
from application domains, to those in the intermediate architectural and design
area as well as to entities from the computational domain.

In this paper we introduce an innovative conceptual content model applicable
to a wide variety of domains and we apply that model to SE processes and their
artefacts.

In section 2 we base our content model on the core model of the compu-
tational domain which abstracts computational content by the computational
concept of signatures. This functional abstraction model is then generalised be-
yond the computational domain (section 3) by introducing the notion of asset
abstraction which models entities domain-independently. We introduce an asset
language and discuss the essentials of asset-based information system implemen-
tation. In the application part of the paper (section 4) we discuss how SE can
be substantially simplified by modelling all SE entities homogeneously in an
asset-oriented model. Furthermore, we argue that the mappings between such
domains and other domain-spanning tasks can be supported by services based on
asset-oriented information systems. The paper concludes with a short summary
and a task outlook in section 5.

2 Conceptual Modelling of Computational Entities

It is historically interesting to observe, how means of abstraction available in
programming languages evolved over time. In the assembly language of the
early days, the main abstraction was providing human-understandable names
(mnemonics) for operation codes. Later more and more abstraction mechanisms
were introduced, amongst them functional abstraction and typing (see, e.g., [14]
on the history of programming languages).

2.1 Functional Abstraction and Types

Most of even the smallest programs will exhibit near duplicate code if written
in a sequential fashion. Introducing the concept of functions to parameterise
and factor out this code has several benefits: (1) It makes understanding the
program easier as it is broken down into semantically self-contained pieces, (2)
it facilitates maintenance, as bugs only have to be fixed in a single place, and (3)
it reduces the program’s size. Functions usually consist of two important parts:
the signature (its formal parameters and its return type) and the function body
(the implementing code) [5].

The main power of functions thus lies in the introduction of an abstraction
layer that associates conceptual information (the signature) with the code body
of the function and hides implementational details. Right from the early days
functions had a strong formal foundation to build on: the λ-calculus [16], which
provides the theoretical basis for general function semantics: function definition
(abstraction) and function invocation (application) form central parts.

Essentially any program deals with data, which the computer handles in the
form of a particular internal representation. Generally speaking, any computer-
representable data can be see as a string of bits. Depending on its proper inter-
pretation, different operations are possible, for example addition, concatenation,
or execution. To support the programmer in making the appropriate assumptions
on the interpretation of data, programming languages introduced the concept of
types. Types have become a central part of most computer languages by allow-
ing the definition of appropriate computational entities and by formally checking
the correctness of their use.

2.2 On Function Signatures over Function Code

Conceptual information on a function is captured in the function’s signature
to provide enough information to anybody who wants to use the function. The
evolution of programming languages brought along new features that take the
mechanism of signatures to higher levels of abstraction. Signatures can be found
on function, class, and even component level, though the latter is still subject
to research [3].

Computational entities are usually modelled in a dualistic way as pairs of
code and signature, or, more generally speaking, of value and type. In section 3
we generalise this model to non-computational domains by means of content-
concept pairs.

2.3 Operational Support for Computational Model Coherence

Based on functional abstraction, coherence of collections of computational en-
tities can be supported by various technologies including compilers, linkers,
runtime bindings, and remote invocations across system boundaries. Compilers
make use of type abstractions as well as function signatures in, e.g., decorated
abstract syntax trees or symbol tables [1]. This enables important features of

compiler technology such as type checking, late binding or type coercion. In ad-
dition, by means of function signatures, functions themselves become first class
citizens. This allows the introduction of higher-order functions [10].

Function signatures and typing enable runtime systems to select and bind
computational entities. A common application is polymorphism.

A third field of application is that of cross system communication. Here sig-
natures are of primary importance, as the full implementation is usually not
available to a remote caller. Instead, calling programs are written against signa-
tures, which serve as a language of mutual understanding to both systems. In
the same context, named types allow the (un)marshalling of data to be commu-
nicated between the systems.

3 Conceptual Modelling of General Domain Entities

The concept of signatures (section 3.1) can be generalised to represent entities
of any domain (section 3.2). We introduce a conceptual content modelling lan-
guage (section 3.3) which drives the automatic generation of conceptual content
management system (CCMS) (section 3.4).

3.1 Functional Abstraction as Special Case of Entity Description

Insights into type systems and their achievements influenced the definition, im-
plementation and utilisation of a series of languages [18, 19, 10]. Starting from
Pascal/R and DBPL this led to the orthogonally persistent object systems
Tycoon-1 and 2 (Typed Communicating Objects in Open Environments 2) [7].

Viewing functional abstraction from a content management perspective, the
code of a function body can be seen as well-formed content which is abstracted
by a signature for management purposes such as type checking, late binding,
information hiding etc. (see section 2.3).

In a series of application projects we applied the general idea—viewing code
as computational content and describing it by a signature as its computational
concept—to entity descriptions for arbitrary domains.

Often content is used to describe real-world entities—concrete or abstract
ones. Just like a piece of code can be used properly only if its signature is
known to the caller, content descriptions of the actual entities have to be paired
with a conceptual understanding of the entities’ nature. E.g., (John, Smith, 5000)
represents the customer John Smith whose balance is $5000 only if the conceptual
model [2] of a customer is clear to the viewer.

Therefore, entity descriptions in general consist of content coupled with a
conceptual model of the kind of entity it refers to. For such [content, concept]
pairs we use the notion of an asset as an indivisible union of perceivable content
and a set of expressions describing it abstractly. This notion is detailed in the
subsequent sections.

Managing entities from the computational domain can be understood as a
special case of general entity descriptions. Returning to the example of function

code, one can view source code as a specific kind of text which follows the
constraints of a certain programming language. Therefore, the existence of a
pair [text, Java program] augments a text to Java source code.

3.2 Assets: On Concept-Content-oriented Modelling

The notion of an asset as introduced in the previous section has been developed
in projects carried out in cooperation with project partners from the human-
ities. One main source of insights is the project Warburg Electronic Library
(WEL) [21]. In this project we support art historians from the domain of polit-
ical iconography.

For general domain models much can be reclaimed from computational mod-
els: the pairing of content and concept, the subsumption of content of specific
concepts under more general concepts, the substitutability of content from sub
concepts of a given concept etc.

Nevertheless, in some respects the entity models we looked at are funda-
mentally different from computational models. There is a duality of structure
and domain semantics of assets. In the above example records with a structure
(first name, family name, balance) can describe domain entities of both the kinds
“debtor” as well as “creditor”, e.g., depending on the balance.

The most severe distinction between descriptions of computational entities
and entities in general is the subjectivity of the latter. For computational do-
mains there exists exactly one well-defined conception. However, in “soft sci-
ences” like the humanities there is no agreed-upon interpretation of contents
and thus no single asset class for entity descriptions. Not only does the con-
ceptual modelling of entities evolve over time as new findings lead to a better
understanding of a domain, interpretations furthermore coexist as personalised
views on entities.

Besides personalisation, there is an additional reason for coexisting asset
models. Typically, domains are defined by using assets from existing base do-
mains, which allows for reuse and also leaves asset definition to the experts of
the field. To be able to incorporate base domain models into (multidimensional)
derived domain models, inter-model relationships need to be established.

For both these reasons—subjective views and reuse—there is a demand for
openness and dynamics. We call a CCMS open if it allows users to define assets
according to their current information needs. Assets may change with time or
context of the user and can be adapted to personal views. Dynamics is the ability
of a system to follow redefinitions of assets at runtime without interrupting the
users’ work.

Just as content needs to be paired with a concept, open and dynamic systems
cannot be based on a data model alone. Data models are limited by technical
constraints of the target system (a database in most cases). To avoid such tech-
nical aspects in the domain model, a conceptual model is required. We briefly
introduce our asset language for specifying such a model.

3.3 The Asset Model and Asset Language

In this section we give a brief description of the asset language as far as it is
required for this paper. More details on the language can be found in [20, 23, 22].

A model consists of asset class definitions for entity descriptions. We refer to
the corresponding part of the language as the asset definition language. First of
all, it (intensionally) describes the structure of assets.

As an example, consider the following asset class definition:

class RegentImage {
content image : Image
concept characteristic title : String

characteristic epoch : Epoch
relationship regent : Regent
relationship artist : Artist
constraint epoch = artist.epoch

}

In the content compartment a list of handles for multimedia content objects
is given. Possible handle types are determined by a base language which is em-
bedded in the asset language. Currently, we use Java as such a base language.

The concept compartment consists of a set of conceptual attributes and
expressions. Characteristic attributes are ones that are inherent in an entity. In
the above example, every RegentImage has a title and an epoch in which it
was created. Just as for the content handles, possible values of characteristics are
determined by the base language. Relationships are established between assets
which describe autonomous entities. Here, each RegentImage has references to
the depicted Regent and to the Artist who created that image. Constraints
are imposed on assets of a class. In the above example it is required that the
epoch in which a RegentImage has been created is the same as that of the
associated artist .

While asset classes capture the structural aspects of assets, they can also be
defined extensionally by naming a set of asset instances:

class DeathOfTheRegent definedby a1, ..., an

Asset definitions are organised in models under the keyword model . As an
example for the incorporation of base models (see the previous section) consider
the sample models shown in fig. 1. One base model called Regents defines asset
classes for descriptions of regents like kings or emperors. Another base model,
Artists , likewise defines various classes of artists. Using these two domains as
base domains, a new third domain on political iconography can be defined. It
incorporates class definitions from the base models.

As can be seen in the example regent and artist information is reused in
the political iconography. From the iconography point of view regent and artist
information are objective so that one concrete model each is selected and used.
Users from the field of political iconography build on these (objective) research
findings in their (subjective) entity descriptions.

model
 Regents

class
 Regent

class
 Monarch
 refines
 Regent

class
 King
 refines
 Monarch

class
 Emperor
 refines
 Monarch

…

model
 Artists

class
 Artist {

concept

characteristic
 epoch : Epoch

}

class
 Painter
 refines
 Artist

class
 Sculptor
 refines
 Artist

…

model
 Political_Iconography

from
 Regents
 import
 Regent

from
 Artists
 import
 Artist,Painter,Sculptor

class
 RegentImage {

content
 image : Image

concept
 relationship
 regents : Regent*

relationship
 artist : Artist

}

class
 EquestrianImage
 refines
 RegentImage

class
 EquestrianPainting

refines
 EquestrianImage

{

concept
 relationship
 painter : Painter

constraint
 painter = artist

on
violation
 modify
 self
 {

 artist := painter

 }

}

class
 EquestrianStatue

refines
 EquestrianImage

{

concept
 relationship
 sculptor : Sculptor

constraint
 sculptor = artist

on
violation
 modify
 self
 {

 artist := sculptor

 }

}

model
 My_Political_Iconography

from
 Political_Iconography

import
 RegentImage

class
 RegentImage {

concept

characteristic
 epoch : Epoch

constraint
 epoch=artist.epoch

}

Fig. 1. Example of a model composed from base models

Subjectivity is possible because the openness property of the asset language
allows the redefinition of assets. As an example, a user can change RegentImage
by the definition shown in the model My Political Iconography in fig. 1.
In the example a user added an additional characteristic attribute epoch plus a
constraint. All content handles and conceptual definitions which are not named
remain unchanged in the redefined class.

3.4 Conceptual Content Management System Implementation

Openness and dynamics as required for entity descriptions are not covered by
contemporary information systems (ISs). Since ISs are usually based on database
technology they share its typical constraints, the most crucial being that databases
rely on one static schema.

Our approach to open and dynamic CCMSs is based on our asset defini-
tion language (see previous section). From models given in the asset definition
language—by end-users—with little regard to implementation constraints open
dynamic systems are generated by a technology that resembles model-driven
architecture approaches [12]. It consists of a model compiler and a modularised
architecture for CCMSs.

A system consists of a set of components reflecting one model each. These
are broken down into modules. The model compiler creates modules, which are
the basis of a domain-specific software architecture suitable for dynamic system
generation [28]. The functionality of a component is defined by a component
configuration.

server module

assets

data
 adapted assets

base assets
local asset proxies

remote assets

unified
view

view 1 view 2

external assets

internal assets

mediation module

distribution module

mapping module

client module

Fig. 2. Modules interface with each other in a layered architecture

Substitutability of modules is achieved by a separation of concerns. For our
current purposes we identified five kinds of modules (see fig. 2):

– The description data of an asset (content, characteristics, and relationships)
is stored in third party systems, databases in most cases. Mapping asset
models to schemata of such systems is done by client modules.

– By use of distribution modules components can reside at different physi-
cal locations and communicate by exchanging data, e.g., XML documents
generated from the asset definitions (comparable to the approach of [24]).

– Components are accessed via server modules using standard protocols.
– A central building block of the architecture of most CCMS applications is

the mediator architecture [29]. In our approach it is implemented by modules
of two kinds. One are mediation modules which delegate requests to other
modules based on the request (operation and assets involved).

– The other kind of modules for the mediator architecture are mapping mod-
ules. By encapsulating mappings in such modules, rather than integrat-
ing this functionality into other modules, mappings can be added dynami-
cally [11].

According to the two ways of combining asset models—model interrelation
and personalisation—openness and dynamics in CCMSs happen along two di-
mensions: (1) the organisation and (2) the application structure [22]. Along the
organisation structure users can define their own views (by personalising content
and schema). Along the application structure, entity descriptions are shared and
reused across domains.

In our approach the architecture of the generated systems allows changes
along the organisation structure by its ability to enable dynamic system evolu-
tion through open redefinition of assets and dynamic invocation of the model
compiler [23].

The association of models is realised by component configurations. Follow-
ing the example from the previous section fig. 3 shows a configuration which
combines two domains—regent and artists descriptions—into the new domain of
political iconography. The component is accessed via mediation module mmed1.
It distributes requests according to the type of the assets on which operations

Fig. 3. Sample configuration of a system for a derived model

are invoked. If assets from one of the base domains Regents or Artists are af-
fected, requests are delegated to the mediation module mmed2. This mediation
module similarly delegates requests further to one of the components holding the-
ses models. These components are accessed via distribution modules mdistrib1

and mdistrib2. In the example of fig. 3 the components consist of client modules
mclient1 and mclient2 and the respective base system only. Requests to the de-
rived model Political Iconography are forwarded by mmed1 to the client module
mclient which manages the users’ assets from the political iconography.

As can be seen in fig. 3 the components for Regents and Artists are inte-
grated into the overall CCMS without modification. This way the cooperating
components remain unaffected, thus preserving their autonomy.

4 Asset Modelling and Software Engineering

The engineering processes of non-trivial software lead to a vast number of inter-
related, but not explicitly connected, artefacts (e.g., requirements texts, various
diagrams, code, tests, executables). In software development methodologies that
are common practice today, most of the relations between artefacts of different
type are not explicitly modelled. Instead, they are captured in the general knowl-
edge of the developers or by “obvious” choice of naming. Both approaches lead
to difficulties: The general knowledge of developers tends to diminish over time

and obvious naming is usually only obvious to the one who chose it [13]. Thus,
tool support for explicit modelling of such inter-dependencies is highly desirable.
In fact, these interrelations are right at the heart of software engineering, as the
transitions between development phases happen along them [9].

We therefore propose to model software artefacts by a domain independent
conceptual content model, which is based on the asset technology discussed in
section 3. This supports (1) retrieval of artefacts, (2) enforcement of their coher-
ence, (3) a common and concise representation, and (4) exchange due to built-in
interoperability.

4.1 On Content Linking and Selection

The asset modelling of computational entities aims to integrate content repre-
sentations across formats and standards. Due to the common conceptual model
a CCMS can work with all entities alike, regardless of the tool that supports
this particular content format. Note that assets therefore take a completely un-
intrusive approach to the content that allows for complete owner autonomy.
Developers can continue to use the traditional tools for creating and modifying
the respective artefacts.

Still, it is possible to guarantee the consistency of changes to system artefacts.
Such consistency checks can happen on the conceptual descriptions of the asset
model level and are implemented via constraint expressions (see section 3). As
an example, consider:

class SoftwareModel {
concept relationship classes : ClassDescription*

relationship objects : ObjectDescription*
relationship sequences : Sequence*
constraint sequences.objActs.msgs.name

<= classes.operations.name
and ...; matching signatures

...
}
class Sequence {

concept relationship objActs : ObjectActivation*

}
class ObjectActivation {

concept relationship obj : ObjectDescription
relationship msgs : Message*

}
...

The constraint on SoftwareModel checks whether all messages used in
sequence diagrams are available as operations in class diagrams. Of course, such
constraints can also model inter-phase relationships, e.g., that every class in the
conceptual model also needs to exist in the implementational one.

Fig. 4. A CCMS configuration for a software engineering scenario

Violation of constraints can be reported for the system model as a whole, re-
sulting in an integrated issue-list for the complete system. Some types of changes
done by developers can result in violations of constraints (e.g., the renaming of
a class in the transition from conceptual to implementational class diagram).
This will show up in the issue list and can be clarified by the developer. The
clarification serves a double purpose: It resolves what seemed to be a violation,
but it also creates a link between two entities whose connection the system could
not have detected automatically.

Fig. 4 shows a configuration for the management of SE entities with interre-
lationships. It is structurally similar to that of fig. 3. In the example there is a
database for every phase of a typical SE process. According to the architecture of
CCMSs there is a client module for each database. In conventional tool settings
users in each phase work with exactly one of the databases at a time. In the
example of fig. 4 this is the case for the analysts who store their results in the
DB of analysis results.

For later stages the shown configuration supports the linking of contents as
explained above. E.g., designers store their artefacts into the design database.
To additionally relate their results to those of the analysis phase they do not
work directly with the module Mc−design which exclusively accesses the design

database. Instead, they work with a mediation module through which they access
both the analysis and the design databases.

The intermediate mapping module mmap−analysis−design extends design as-
sets such that relations to analysis assets are added. This way, designers can
establish links between artefacts from analysis and design phases. These links
can later (see section 4.2) be exploited to support a variety of functions.

Mediation modules do not only bridge the gap between analysis and design.
They can also mediate between the other phases (see fig. 4). Programmers work
on capturing the results of the design phase in actual code. In traditional envi-
ronments, they would look at the design documents and then work exclusively
with the implementation database. This approach breaks the links between de-
sign and implementation artefacts. Again, by use of a mediation module, this
problem is resolved.

Testers need access to an even wider selection of data. They do not only
work on the test database, but on a mediation module that also accesses the
analysis and implementation phase components. This mediation module allows
for seamless navigation through all the artefacts along the preserved links.

Obviously, the asset model supports linking of content between the various
phases of the development process. Such links can be used to establish traceabil-
ity [8, 15]. Thanks to the overarching conceptual modelling, content from differ-
ent phases is clearly connected along the lines of the corresponding concepts.
These links can explicitly be modelled (as in approaches like “GRIDS” [30]) in
the asset model (see section 3), but mostly this is not necessary, as the conceptual
information persists across phase boundaries. With this model-inherent support
of CCMSs it is possible to achieve concise semantic connections of content. This
was previously very difficult and thus usually not attempted [9].

4.2 Applications and Application Support

A CCMS like the one outlined in the previous section can be used to support
all aspects of the software development workflow. In this section, we will briefly
introduce some interesting use cases.

Navigation through conceptual linking of artefacts. Through mediation
modules that integrate various client modules, users are enabled to navigate
along any path, even if it spans across multiple phases. This is beneficial for
anybody taking part in software development to find artefacts that are related.
A prominent example are implementers, who can now easily access the docu-
mentation for the code at hand. The same mechanisms allows them to reach
back into design or even analysis to retrieve documents which concern the soft-
ware entity at hand. This way it is much easier to understand what the entity
does and why it is there. Especially the backwards links (“why do we need this
class?”) are not obvious in traditional software development. A CCMS is able
to give a detailed account of the requirements and design decisions that lead to
the existence of the entity in the implementation phase.

Custom perspectives for different roles. By means of personalised models
different user roles can be provided with customised views on the development
artefacts, e.g., to work on UML class diagrams with or without attributes shown.
This way, users have to deal only with data which is relevant to their task.

Cross-phase constraints. Maintaining consistency between the artefacts of
several development phases is a major problem in software development. Through
the conceptual links that are also used for navigation, one is able to write con-
straints which span phase boundaries. An example of this was given in the previ-
ous section, but further use cases are not difficult to imagine: Tracking of changes
from design to implementation (and the other way around), ensuring test cov-
erage of analysis requirements, or monitoring the degree of completion of the
implementation with respect to design documents.

Transparent distribution. Modern development happens in teams. This calls
for remote cooperation of all the members of a team. In particular, they need to
share a common information basis to ensure that the created artefacts are con-
sistent with each other. Moreover, all the functionality outlined above needs to
be available across several systems in a concurrent and transparent way. CCMSs
support this by means of distribution modules (see fig. 2). In combination with
the personalisation abilities, distribution in CCMSs goes beyond of what is tra-
ditionally used in software development. Through personalisation, users cannot
only work on a common data base in a distributed fashion, but are also per-
mitted to deviate from the community for some time and then remerge their
artefacts. This can e.g. be used for branching source code.

5 Summary and Task Outlook

In this paper we present our asset-oriented information model as a conceptual
content model gained by generalising the notion of functional abstraction pre-
dominant in the computational domain. Its safe and efficient use for the man-
agement of computational content is one of the fundamentals of state-of-the-art
software development tools.

The presented generalisation step towards domain-independent conceptual
content modelling makes CCMSs sound candidates for supporting the entire SE
process ranging from application domain entities via artefacts for software design
and architecture down to computational entities for system implementation and
execution, thereby improving the coherence of SE processes.

Future work will address the extension of asset-based models for SE pro-
cesses. This will include the development of models for the various development
steps and their associated activities. Essentially, we address two goals: First,
process portals can be built that collect examples of “best-practice” processes or
parts thereof [25] which sometimes are more easily judged than abstract descrip-
tions [17]. Second, making use of openness and dynamics allows the individuali-
sation of software development processes to better suit a project’s pragmatics [6].

Extending conceptual support beyond the traditional phases of software de-
velopment into runtime will make information about the development of the
system available during system execution. All sorts of services including debug-
gers and other inspection services will benefit from such extended information
that allows to trace entities back to, e.g., the analysis phase.

Obviously, integration of CCMSs with traditional software development en-
vironments is essential in practical use. We expect that due to the modular
architecture of CCMSs we will be able to create bridges to specific tools and rep-
resentations (such as XMI based ones) which partially automate the conceptual
modelling task of the developers. Also, with MDA [12] receiving much research
interest lately, we will investigate how (semi-) automatic transitions between
various development phases can benefit from the use of conceptual modelling.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Topics in Information Systems. Springer-Verlag, 1984.

3. Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-based
Design. In Proceedings of the First International Workshop on Embedded Software,
volume 2211 of LNCS, pages 148–165. Springer-Verlag, 2001.

4. Alexander Egyed and Nenad Medvidovic. A Formal Approach to Heterogeneous
Software Modeling. In Proceedings of the Third International Conference on Funda-
mental Approaches to Software Engineering, volume 1783 of LNCS, pages 178–192,
2000.

5. Hartmut Ehrig, Bernd Mahr, Felix Cornelius, Martin Groe-Rohde, and Philip
Zeitz. Mathematisch-strukturelle Grundlagen der Informatik. Springer-Verlag, 2nd
edition, 2001.

6. Martin Fowler. UML Distilled. Addison-Wesley, 3rd edition, 2003.
7. Andreas Gawecki and Axel Wienberg. Report on the Tycoon-2 Programming

Language. Version 1.0 (Draft). Technical report, Higher-Order GmbH, Hamburg,
and Software Technology and Systems Institute, Hamburg University of Science
and Technology, 1998.

8. Orlena C.Z. Gotel and Anthony C.W. Finkelstein. An Analysis of the Require-
ments Traceability Problem. In First International Conference on Requirements
Engineering (ICRE), pages 94–101. IEEE Computer Society Press, April 1994.

9. Duane Hybertson. Strengthening the Modeling Foundation of the MDA. In Work-
shop in Software Model Engineering, 2002.

10. Florian Matthes. Higher-Order Persistent Polymorphic Programming in Tycoon.
In Fully Integrated Data Environments, ESPRIT Basic Research Series, pages 13–
59. Springer-Verlag, 2000.

11. Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration with plug-
gable composite adapters. In Software Architectures and Component Technology.
Kluwer, 2000.

12. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical Report
omg/2003-06-01, OMG, June 2003.

13. Mark A. Musen. Ontology-Oriented Design and Programming. In Knowledge
Engineering and Agent Technology. IOS Press, 2000.

14. Terrence W. Pratt and Marvin V. Zelkowitz. Programming Languages: Design and
Implementation. Prentice-Hall, 3rd edition, 1996.

15. Balasubramaniam Ramesh and Matthias Jarke. Toward Reference Models of Re-
quirements Traceability. Software Engineering, 27(1):58–93, 2001.

16. György Revesz. Lambda-Calculus: Combinators, and Functional Programming.
Number 4 in Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1988.

17. Thomas Rose, Martin Fünffinger, Holger Knublauch, and Christian Rupprecht.
Prozessorientiertes Wissensmanagement. Künstliche Intelligenz, 16(1):19–24, 2002.

18. Joachim W. Schmidt. Some High Level Language Constructs for Data of Type
Relation. ACM Transactions on Database Systems, 2(3), 1977.

19. Joachim W. Schmidt and Florian Matthes. The Rationale behind DBPL. In
3rd Symposium on Mathematical Fundamentals of Database and Knowledge Base
Systems, volume 495 of LNCS. Springer-Verlag, 1991.

20. Joachim W. Schmidt and Hans-Werner Sehring. Conceptual Content Modeling
and Management: The Rationale of an Asset Language. In Perspectives of System
Informatics, volume 2890 of LNCS, pages 469–493. Springer, 2003.

21. J.W. Schmidt, H.-W. Sehring, M. Skusa, and A. Wienberg. Subject-Oriented Work:
Lessons Learned from an Interdisciplinary Content Management Project. In Ad-
vances in Databases and Information Systems, volume 2151 of LNCS, pages 3–26.
Springer-Verlag, 2001.

22. Hans-Werner Sehring. Konzeptorientiertes Content Management: Modell, Sys-
temarchitektur und Prototypen. PhD thesis, Hamburg University of Science and
Technology (TUHH), 2004.

23. Hans-Werner Sehring and Joachim W. Schmidt. Beyond Databases: An Asset
Language for Conceptual Content Management. In Proceedings of the 8th East
European Conference on Advances in Databases and Information Systems, volume
3255 of LNCS, pages 99–112. Springer-Verlag, 2004.

24. German Shegalov, Michael Gillmann, and Gerhard Weikum. XML-enabled work-
flow management for e-services across heterogeneous platforms. VLDB Journal,
10(1):91–103, 2001.

25. Carla Simone and Monica Divitini. Ariadne: Supporting Coordination through a
Flexible Use of the Knowledge on Work Processes. Journal of Universal Computer
Science, 3(8):865–898, 1997.

26. Ian Sommerville. Software Engineering. Addison-Wesley, 2000.
27. Ragnhild van der Straeten. Semantic Links and Co-Evolution in Object-Oriented

Software Development. In Proc. 17th IEEE International Conference on Automated
Software Engineering, page 317. IEEE Computer Society, 2002.

28. S. White and C. Lemus. Architecture Reuse Through a Domain Specific Language
Generator. In Proceedings of the Eighth Workshop on Institutionalizing Software
Reuse, 1997.

29. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25:38–49, 1992.

30. Andreas Zamperoni. GRIDS – graph-based, integrated development of software:
integrating different perspectives of software engineering. In Proceedings of the 18th
International Conference on Software Engineering, pages 48–59. IEEE Computer,
1996.

