Content is Capricious: A Case for Dynamic
System Generation

Hans-Werner Sehring, Sebastian Bossung, and
Joachim W. Schmidt

{hw.sehring,sebastian.bossung,j.w.schmidt} @tuhh.de
Software Systems Institute (STS)
Hamburg University of Science and Technology (TUHH)

Abstract. Database modeling is based on the assumption of a high reg-
ularity of its application areas, an assumption which applies to both the
structure of data and the behavior of users. Content modeling, however,
is less strict since it may treat one application entity substantially dif-
ferently from another depending on the instance at hand, and content
users may individually add descriptive or interpretive aspects depend-
ing on their knowledge and interests. Therefore, we argue that adequate
content modeling has to be open to changes, and content management
systems have to react to changes dynamically, thus making content man-
agement a case for dynamic system generation.

In our approach, openness and dynamics are provided through a com-
piler framework which is based on a conceptual model of the application
domain. Using a conceptual modeling language users can openly express
their views on the domain’s entities. Our compiler framework dynami-
cally generates the components of an according software system. Central
to the compiler framework is the notion of generators, each generating
a particular module for the intended application system. Based on the
resulting modular architecture the generated systems allow personalized
model definition and seamless model evolution.

In this paper we give details of the system modules and describe how the
generators which create them are coordinated in the compiler framework.

1 Introduction

Most data-intensive applications serve, one way or another, as information sys-
tems (ISs) and call for some kind of persistence technology. High volumes of data
and large user communities require additional functionality (query support, con-
currency, recovery etc.) which nowadays comes nicely packaged as off-the-shelves
database models and database technology.

Database modeling is rather strict in the sense that it is based on the as-
sumption of a high regularity of its application areas. This assumption applies
to both the structure of data and the behavior of users. Therefore, database
models rest on a small set of agreed upon computational base types (numbers,
strings, ...) and a few structuring mechanisms (mostly records and sets) used

to design schemata shared by the entire application and its community. In an
enterprise database, for example, the view on a company employee is defined be-
fore employee records are instantiated, and users of the database have to share
the company’s view.

Content modeling, however, is more capricious since it may treat each rep-
resented entity substantially differently depending on the instance at hand, and
content users may individually add descriptive or interpretive aspects depend-
ing on their knowledge and interests. For example, when considering a particular
piece of art, some users may be interested in the artist who created it, the mate-
rial used and the prices achieved while others are more concerned about details
on the period in which it was created, its meaning, etc.

Therefore, we argue that adequate content models have to be open to changes,
and content management systems have to be dynamic to reflect such model
changes. In other words, content management systems are seen as a case for
dynamic system generation while database management system usually get away
with the technically less ambitious case of generic system implementation.

ISs inherit the restrictions of fixed schemata and a uniform user community
from the underlying database technology. The development of ISs usually ac-
commodates to these restrictions: in an intensive phase of domain analysis the
database schema is defined once and for all. Application logic and presentation
are implemented with respect to the schema and the domain model. Because IS
implementation relies heavily on certain schema information, later changes to
this schema affect all parts of an IS, an aspect nearly prohibitive to any effort
of dynamic system evolution or to any attempt of system personalization.

For content management systems such inflexibility cannot be tolerated. Con-
tent is viewed by users in different contexts with individual conceptual models
in mind. Furthermore, users have to be able to define suitable models or adapt
existing ones during the lifetime of a content management system. Therefore,
model changes have to be integrated dynamically, without additional develop-
ment steps which include manual intervention.

In our approach, openness and dynamics of content management systems is
provided through a compiler framework which is based on a conceptual model of
the application domain. In our conceptual modeling language users can openly ex-
press their views on the domain’s entities, and based on such views our compiler
framework dynamically generates the components of the implementing software
system. Central to the compiler framework is the notion of generators, each
generating a particular module for the application system and collectively im-
plementing the intended application. Based on the resulting modular architecture
the generated system allows personalized model definition and seamless model
evolution.

In this paper we give details about the system modules as well as the genera-
tors which create them. We also describe how the generators are interconnected
in the compiler framework.

The paper is organized as follows: in sec. 2 we give a brief account of con-
ceptual modeling for content-intensive application systems and of contemporary

approaches to model-based system generation. The additional support required
for openness and dynamics is outlined in sec. 3. In sec. 4 we discuss our con-
tributions to implementing open and dynamic content management systems.
A detailed description of our model compiler framework is finally presented in
sec. 5. The paper concludes with a summary and a short outlook on future work.
Related work is discussed where appropriate.

2 Application System Modeling

Automatic system generation is based on abstract models—of either an appli-
cation domain or of software. Such models and appropriate software generation
facilities enable open dynamic content management systems.

2.1 Conceptual Modeling

Conceptual modeling [10, 8] is the activity of providing a model of an application
domain. Conceptual modeling languages provide a domain vocabulary and avoid
technical details as much as possible.

Starting system development with conceptual modeling thus avoids untimely
consideration of technical constraints.

A conceptual model defines a vocabulary as a foundation for users and soft-
ware developers. This way software uses the domain experts’ vocabulary, and
users are able understand the functionality of the developed software.

2.2 Model-driven Development

Research and practice in software engineering led to a thorough understanding of
IS development. The insights gained are leading towards approaches which allow
to derive software from specifications. To this end, models are used as (more or
less) formal specifications of software systems.

Two of the approaches which are currently discussed take a somewhat exteme
position: domain-specific languages (DSLs) [4] and mappings between software
models expressed in general purpose languages, e.g., the Model-driven Architec-
ture propsal [13].

DSLs are abstract languages for one application domain which are intended
to be used by domain experts. DSLs are not necessarily (computationally) com-
plete. Instead they cover an area of an application domain with a clearly de-
fined scope. DSLs have a fixed semantics within the application domain. This
semantics is based on by prefabricated software components which provide im-
plementations. Such software components can range from libraries to software
generators [17].

General purpose languages serve the modeling of complete software systems.
Often, languages which allow varying degrees of concreteness are used, e.g. the
Unified Modeling Language (UML). During the generation process of a software

system a series of model mappings is applied, leading from abstract to more con-
crete models. During the process details are added at every model stage. Usually,
the series of models starts with less formal models which can be created in co-
operation with domain experts. Approaches based on general purpose languages
generally arrive at completely formal descriptions of the software to be gener-
ated. Therefore, the final step of creating code comes down to a transformation
from the chosen language to a programming language.

2.3 Open Modeling and Dynamic System Evolution
As discussed in the introductory section content management systems need

— a conceptual model which is open to different user views (openness) and
— implementations which keep up with the opinions of the users (dynamics).

Therefore, a modeling language is needed which on the one hand allows
domain experts to describe their application domain, and on the other hand is
concrete enough to serve the purpose of automatic software generation.

An approach which is purely based on a DSL does not offer openness since it is
constrained to a fixed set of concepts which are offered by the respective language
and mapped to existing software components. Existing approaches which map
models expressed in a general purpose language to each other do not account
for dynamics. The additional information given for the mapping at every model
stage generally prevents fully automatic system creation [2, 5].

In contrast to the approaches discussed in the previous section we concentrate
on the specific class of content management which is combined with conceptual
models for the description of entities. Modeling is open to any application do-
main, while the restriction to systems with a common core functionality allows
their dynamic generation.

Note that we have to consider two modeling facilities for openness and dy-
namics: for the source application domain we need a modeling language which
is general enough to allow openness, meaning that it is not constrained to pre-
defined concepts for the description of entities. The target software model has
to be specific enough to allow dynamics by enabling automatic generation of
content management systems.

3 Support for Openness and Dynamics

The requirements of openness and dynamics call for special support in both
systems creation as well as in operation. In fact in open and dynamic systems
the line between creation and operation is blurred.

3.1 Shortcomings of Manual Software Engineering

Data-intensive applications normally are developed in processes which bear re-
semblance with the waterfall process: As part of the analysis of an application

domain a conceptual schema is created. Based on this schema, the whole of the
system is implemented. This means that the application is manually linked to the
schema by the implementation process. Obviously, any changes to the schema
have an impact on all parts of the application.

Therefore, when openness and dynamics are required, the common approach
of manually implementing a static conceptual schema is clearly unfeasible. Our
approach can remedy the situation by open modeling and dynamic systems gen-
eration as is discussed in sec. 4. Model changes are considered the rule not the
exception, and content management systems are created with evolution in mind.

3.2 Modeling Requirements

The conceptual modeling language is needed to mediate between two worlds: the
application domain of a user and the later system implementation.

Our approach concentrates on content management but combines it with
a conceptual model of the described entities. Entities are therefore modeled
dualistically by medial content as well as a conceptual description (see sec. 4.1).
The approach is thus applicable to a wide variety of application domains.

However, in order to support dynamic systems, the model given by the user
has to be compiled into a running system without any human intervention.
Our approach achieves this by means of a compiler framework running a set
of generators as described in more detail in sec. 5. On top of the conceptual
schema, some of the generators might require a few additional parameters to
bridge the gap between a conceptual model and its implementation in a content
management system. These parameters correspond to the additional information
needed for general purpose language approaches as discussed in sec. 2.2.

3.3 System Requirements

The general requirements outlined above can be mapped to requirements to
content management systems. In particular:

1. The conceptual schema needs to be available to users and users must be able
to modify it.

2. The system must be up to date with any such modifications automatically,
therefore any manual development is not possible.

3. The conceptual schema must be truly conceptual. In traditional systems
development it is often the case that implementation decisions have to be
made during the analysis phase for purely technical reasons (e.g., the length
of fields because of restrictions in the database). Such information must be
separated from the conceptual schema.

We describe in the next sections how these requirements are met by our
approach.

PN

media model

view ‘ view

[Content | Concept]

Fig. 1. Description capabilities of assets.

4 Ingredients of Open and Dynamic Systems

The requirements put forward in sec. 3 cannot be met with standard contempo-
rary information systems. Generic systems lack openness since application do-
main concepts have to be mapped to generic ones, and hand-coded systems lack
dynamics since changes require an incremental engineering roundtrip. Our ap-
proach employs a conceptual modeling language, a modular system architecture,
as well as automatic system generation to meet the requirements. The concep-
tual modeling language is covered in detail in previous work (see [14, 15]) but
will be outlined next. We then describe the modular architecture of generated
content management systems and point out how these systems are created.

4.1 Conceptual Modeling Language

In our conceptual modeling language, entities are described by asset classes.
These classes jointly describe a medial view (in the form of multimedia content,
e.g., an image) and a conceptual view of the entity, see fig. 1. The conceptual
view consists of characteristics (primitive attributes which are intrinsic to the
entity), relationships to other asset classes, and constraints on the asset class.
Classes are related in an inheritance hierarchy.

Asset classes are grouped into asset models, which usually deal with a par-
ticular application domain. Classes from one model can be imported into other
models. The language supports openness by allowing the (partial) redefinition of
imported classes to suite the task at hand. Anything that is not redefined stays
the same as in the original.

Furthermore, the language provides means to create, modify, and delete in-
stances as well as to query for them.

4.2 Modular System Architecture

The creation of a system in a dynamic manner can in some cases entail changes
to its setup. The architecture of the system must therefore allow for flexible
reconfiguration. A monolithic system is certainly not capable of such flexible

m__, - mediation module for access to

med

assets from schemata M, and M,

m,, : transformation M Client
module M M module for database
Server Client Mediation 1 2 with schema for M
Mjienty - ClieNt
module for database
[| [| Wlth Schema for M DB W|th
Transformation Hub Distribution schema

for M,

(a) Six kinds of modules DB with

schema
for M,

(b) A sample module organization

Fig. 2. Modules of generated content management systems.

change. Quite the contrary, we propose a modular system architecture that is
built of many small modules. The kinds of modules for the most frequently
occurring tasks are illustrated in fig. 2(a). All modules have a uniform interface
and can be composed in layers. This makes it possible to always combine modules
in the way most appropriate to the task at hand.

The module interface reflects the capabilities of the asset language to create,
modify, delete and query for asset instances. Each module can thus express its
functionality in terms of calls to the module(s) on the underlying layer.

A component is a combination of modules, usually arranged in layers. Com-
ponents provide several services to their modules: resolution of identifiers, man-
agement of module lifecycles, and management of the proper organization of
modules at system startup. Each module can use other modules and can also be
used by several others. However, the setup of modules in a component always
must be a directed acyclic graph.

Modules can be of several kinds, in particular:

— Components are accessed via server modules using standard protocols.

— The description data of asset instances is stored in third party systems,
databases in most cases. Mapping asset models to schemata of such systems
is done by client modules.

— A central building block of the architecture of generated content management
systems is the mediator architecture [19]. In our approach it is implemented
by modules of two kinds. The first are mediation modules which delegate
requests to other modules based on the request.

— The other kind are transformation modules. By encapsulating mappings in
such modules, rather than integrating this functionality into other modules,
mappings can be added dynamically (compare [12]).

— Hub modules uniformly distribute calls to a larger number of underlying
modules.

— By use of distribution modules components can reside at different physical
locations and communicate by exchanging data.

These module kinds have been identified with respect to the requirements
of content management systems. They provide basic services by the principle of
Separation of Concerns. The functionality of a content management system is
implemented by a component configuration which composes selected modules.
For example, schema evolution leads to a combination of client, transformation,
and mediation modules (indicated in figure 2(b), see [15] for details).

4.3 System Generation

The subdivision of a system into fine-grained modules as outlined above allows
for flexible reconfiguration. This is necessary for a dynamic system, however
not sufficient. Manual implementation of modules is unfeasible, as modules are
usually highly schema dependent. System generation is therefore necessary to
allow the system to be dynamic.

Several generative approaches (e.g., [18]) use loosely coupled generators.
While this is fine for system generation under the supervision of a developer,
generation in dynamic systems must happen without such intervention. We have
therefore aimed at a tight, albeit flexible, coupling of generators. Given that our
approach assembles systems of smaller modules, we can use generators which
each create a particular type of module (e.g., a client module for persistence
in relational databases). The generators are combined in a compiler framework
which takes care of their proper setup and manages their interdependencies.

5 Model Compiler Framework

As argued in the previous section automatic software generation is necessary to
allow dynamics of information systems with a fine-grained architecture.

There are different approaches to the problem of generating whole software
systems which are composed of various parts that are produced by indepen-
dent generators: (1) the generated software modules have to be adapted to be
composable [7], (2) generic software modules are wrapped in a domain-specific
way [11], (3) glue code to combine modules needs to be generated [3], or (4) the
generators need to cooperate in order to create a consistent set of modules. As
already indicated we favor the latter approach for content management systems.

Writing coordinated generators is a complex task, mainly because setting
up an infrastructure for them [16] is difficult. Therefore, our model compiler
for content management systems is designed as a framework with generators as
extension points. In conjunction with a facility for code generation it constitutes
a domain-independent meta-programming infrastructure [17].

5.1 A Framework Approach to Model Compilers

A typical compiler is divided into frontend and backend [1] to decouple source
language recognition from target language generation. To this end, a compiler
frontend creates an intermediate representation of the input definitions. Such

an intermediate representation forms the input of a compiler’s backend which
generates code in the target language. This allows compiler setups for multiple
targets as well as—at least in theory—to process different source languages.

The model compiler for our conceptual language is built in an object-oriented
fashion. The classical division into frontend and backend has been translated into
a framework architecture that allows to configure compilers for the generation
of dynamic content management systems. This framework addresses the need to
generate multiple targets in conjunction.

An instance of the compiler framework is defined by providing a parser, a
dictionary proxy, several generators, and a configuration of the framework. This
is detailed in the subsequent sections.

Alike a programming language compiler, which creates an intermediate code
representation, the frontend in the compiler framework creates intermediate
model representations. Starting from a class IntermediateModel the asset class
definitions are available as an object graph.

Compilers use symbol tables to store information about the language con-
structs recognized. Our model compiler for content management systems builds
on the concept of symbol tables, but extends it significantly: these tables are
not only used in the frontend of a compiler, but they are the means by which
generators communicate during the generation process.

Asset class definitions can be distributed: models are created by combining
existing classes available to the modeler, and existing classes can be redefined
(see section 4.1). Therefore, the model compiler needs access to asset classes
which are not contained in the model at hand, but have been defined elsewhere.
They are provided by dictionaries which store available class definitions.

Fig. 3 shows a UML sequence diagram of the frontend activities of a compiler
run. This figure emphasizes the function of dictionaries. In the example an inter-
mediate model im is created by the parser in the frontend. The definitions make
reference to another model which is included as an intermediate model sm. In or-
der to get access to it the parser requests it from the framework (sm=getModel).
The framework contains a dictionary proxy to transparently access the known
dictionaries. In the example there are two dictionaries. The first one does not
know the requested model. The second one returns it as rm, and the dictionary
proxy creates a local representation sm from rm.

Dictionary proxies are used to decouple a compiler configuration from the ac-
cess to dictionaries. Dictionaries can be accessible by various means. For example,
asset class definitions can be contained in local files or in resources accessible
over a network. Dictionary proxies are a configurable part of the framework so
that various alternatives can be realized.

Since a compiled model might be included into other models, it also has to be
made available in a dictionary. In the example of fig. 3 the framework registers
the model with the dictionary proxy (registerModel), which in turn inserts it into
the first dictionary (createModel).

Dictionaries by themselves are content management systems which are gen-
erated from the asset meta model. This way, the compiler can use a proper

:Compiler | :Dictionary | | :Dictionary |

Configuration
getParserDescription() >
getDictionaryProxyDescription() >
| create [parser
create »| :DictionaryProxy |
im=parseModel | create
= P im:Inter
__ sm=getModel Mediate
sm=findModel ! quel
gl rm=findModel >
rm=findModel 5]
create(rm) sm:inter
Mediate
T Model
continued in backend, running generators
registerModel(im)| M createModel(im) ‘ng

Fig. 3. Frontend of the model compiler with distributed dictionary.

component configuration. A variety of dictionary implementations can easily be
created using the existing generators, e.g., dictionaries that store schemata in re-
lational databases or XML databases. Furthermore, dictionaries can be equipped
with a range of other functionality for, e.g., remote access.

5.2 Parsers

In accordance with the classical architecture of compilers the intermediate model
is used to distribute information between the compiler components. An inter-
mediate model is created from an external representation. A parser makes the
compiler independent of a particular linguistic form of an asset model, and there
are parsers that retrieve asset model definitions from various sources.

A set of parsers is readily available for model compiler instances. The one
most commonly used reads files containing asset language expression as defined
in [15]. Other options are parsers for different syntactical forms, e.g. in XML, or
parsers that adapt an internal model representation from modeling tools.

Additional parsers can be developed within the compiler framework. They
have to fulfill an interface prescribed by the framework which requires them to
produce an IntermediateModel instance.

5.3 Code Generators

The backend of a model compiler consists of generators. There is a correspon-
dence between generators and the modules of content management systems. For

each implementation of one of the module kinds introduced in sec. 4.2 there is
at least one generator. Often there is more than one generator which contributes
to the creation of a module. For example, client modules for database access
are typically created by a pair of generators; one of them creates the database
schema, the other one creates code to access the database as well as to store and
retrieve asset instances.

In order to be integrated into the compiler framework, generators have to
fulfill an interface. This interface mainly defines methods for a protocol by which
generators communicate with the framework.

As part of this protocol parameters can be passed to generators as will be ex-
plained in the following sections. Generators take parameter values into account
when generating a module.

The artifacts which are created by a generator to implement a module are
reflected in the symbol table of the generator. The generators create their arti-
facts as a complex structure into which the symbol table provides named points
of entry. Each generator fills its symbol table during its execution and passes
the symbol table back to the compiler framework afterwards. The framework
in turn gives available symbol tables to further generators making them the
essential means of generator communication.

The symbol tables contain detailed structured information about the arti-
facts which were created by the respective generator. A typical behavior for a
generator is for example to iterate over all asset classes from the intermediate
model and all their attributes to generate a piece of code for each attribute. The
symbol table will then contain a mappings from attributes to these pieces of code
(e.g., access methods). The aim of symbol tables is to make access explicit for
generators which rely on artifacts created by others (and most generators do).
Without symbol tables, generators further down the chain would have to make
assumptions about namings and would have to recover the corresponding pieces
from the whole of the generated artifacts.

A complete system is normally built from artifacts in several languages. Dif-
ferent meta-programming facilities are available to the generators to create their
output. This facilitates the creation of structured models of the artifacts and is
therefore important to provide meaningful symbol tables. The structured models
are converted into their concrete form as a side-effect of the generator execution.
Such a concrete form are for example files containing source code of a particular
programming language.

5.4 Framework Configurability

By providing generator implementations the backend of the compiler frame-
work is enriched with additional functionality. Which generators are actually
executed is determined by a compiler configuration, as are the frontend compo-
nents (parser, dictionary proxy) used. Multiple configurations can be provided
by system experts. Upon dynamic system generation a user chooses one of the
available configurations for each compiler run.

For the frontend, the parser and the dictionary proxy (see fig. 3) can be
chosen. They are provided as discussed in sections 5.1 and 5.2.

The backend configuration consists of two kinds of definitions: the generators
to be used for creating a content management system and values of parameter
to the generators.

For each configuration a set of generator implementations is given. This way
generator instances out of the known generator implementations are chosen.
There may be more than one generator with the same implementation, for ex-
ample, if two client modules for database access are needed in a content manage-
ment, system. In this case the two client modules are created by two instances
of the corresponding generator. The generation results may differ because of
different sets of parameter values.

Values for parameters which a generator might need are given as part of the
configurations. Generators determine the parameters to use at runtime, and the
framework will supply them with the values given in the configuration. This is
part of the generator protocol introduced in the subsequent section.

5.5 Generator Control

Traditional compilers for programming languages include a backend for one gen-
eration target—executable binary code in most cases. In contrast a model com-
piler for content management systems has to consider several targets at a time,
e.g., database schemata, database access code, application level code, and so on.

The multiple targets of a model compiler are addressed by the generators
provided to the compiler framework as described in the previous section. The
various artifacts a compiler creates are highly interrelated. Therefore, the execu-
tion of generators has to be scheduled in such a way that they create a working
content management system.

Generators follow a specified protocol inside the compiler framework. Fig. 4
illustrates this protocol in the form of a UML sequence diagram. In this fig-
ure a compiler setup with three generators is shown. The APlGenerator is a
standard generator which creates the uniform module interface (see sec. 4.2).
An SQLSchemaGenerator produces a database schema for a relational database.
Real setups use specialized generators which account for the peculiarities of con-
crete database management systems. The JDBCGenerator creates Java code for
a client module which stores asset instances according to the given asset model
in the database with the generated relational schema.

The grey box in fig.4 represents the compiler frontend as shown in fig. 3. It
creates the intermediate model im which reflects the asset class definitions.

The extended symbol table concept described in sec. 5.1 is the primary means
to coordinate generator executions. Depending on its configuration, the frame-
work (here represented by the Compiler instance) creates the necessary genera-
tors. Each generator is asked for the symbol tables it needs as input, the symbol
table it will produce as the result of a successful execution, and the configura-
tion parameters it needs to be supplied with. Based on the information given by

piler | :CompilerConfiguration |
T

parsing in frontend, creating intermediate model
L

| im:IntermediateModel |

getGeneratorDescriptions()

create »| :SQLSchemaGenerator |
getRequestedSymbolTables(im)
getProducedSymbolTable ;
getRequestedParameters(im) >

Create »| :APIGenerator |

getRequestedSymbolTables(im)
getProducedSymbolTable

getRequestedParameters(im)

create :JDBCGenerator

getRequestedSymbolTables(im)
getProducedSymbolTable
getRequestedParameters(im)

determine schedule

0

Yvy

Yvy

1

params=readParameters() —r
stl=generate(im{},paramsA)
st2=generate(im aramsJ

st3=generate(im,{stl,st2},paramsS) >

y
L1

Fig. 4. Generator scheduling protocol.

the generators the framework computes a schedule for generator execution that
ensures the required data flow.

In the example of fig. 4 both the APT and the SQL schema generator will not
require any symbol tables as input. The JDBC generator generates a client mod-
ule which implements the module API and accesses a database configured with
the generated schema, thus it requires symbol tables which reflect the respective
artifacts. Therefore, the JDBC generator needs both symbol tables created by
the other generators (stl and st2) and thus has to be executed last. Either the
APT or the SQL schema generator can be run first, or both can be run in parallel.
Following the generator protocol the JDBC generator returns the symbol table
st3 as announced by getProducedSymbolTable. This symbol table can be used by
generators which want to employ the JDBC code.

Finally, the generators are run in the determined order (generate in fig. 4).
They are provided with the required symbol tables and parameter values, and
return a new symbol table.

Fig. 5 makes the data flow that takes place between the generators through
symbol tables more explicit. The generators of a first schedule stage (API and
SQL schema generators) are executed concurrently. Each of them creates some
module artifacts and stores information about the generated artifacts in a partic-
ular symbol table. The symbol tables are available to the generator of the second

Compiler Framework API Generator | SQL Schema JDBC
Generator Generator

parse model

(read generator conﬁg.)

initialize generators

\ \/ \
request symbo request symbo request symbo
table table table

compute schedule
start generators 1

Vi

:IntermediateModeIF::::::::::: T ___I-_~"~"T~"~"""T">"""° 1
T Vi |
~ == === =% generate code) (genlerate code) :

| o d_ 1 ___ | _ _ |

vl |

. APISymbolTable _4___/ _________________ -—
SOLSymbolTable F=2— - W/ |\ | —_—
[

start generators 2 — | J
= generate code

[JDBCSymbolTable e — — — - — - - - - -4 | L

(assemble component)<

Fig. 5. Generator communication with symbol tables.

schedule stage (the JDBC generator). The activity diagram in fig. 5 shows both
control and data flow to point out the fact that the compiler framework com-
putes a schedule for the generators instead of having them controlled by data flow
alone. This way, the compiler framework can detect inconsistent configurations
without actually running generators.

Generators are provided with the intermediate model when they request sym-
bol tables (getRequestedSymbolTables) and parameters (getRequestedParameters).
This way the choice of symbol tables and parameters can depend on the actual
asset class definitions. E.g., a schema generator needs type mappings for all asset
class members. Therefore, it will gather the types used in asset class attributes
and request the according SQL types which shall be used within a database.
Because of the dynamic choice of symbol tables possible generator schedules can
depend on the asset class definitions.

5.6 Component Assembly

When all generators have finished their tasks a system component is assembled
from the generated modules and parameterizations of third party products. This
includes two activities: actually building the modules and combining them in a
component of a content management system.

Modules are built from the generated artifacts. Each generated artifact needs
a special final treatment: source code needs to be compiled, database schemata
have to be deployed, etc.

A component is created according to a given component configuration (see
sec. 4.2) which determines the component’s functionality on the basis of the
basic functionality offered by the individual modules.

6 Summary and Outlook

Content management systems which describe domain entities by multimedia con-
tent have to take into account their users’ views and working contexts. One way
to do so is by means of a conceptual model provided by the users. In this paper
we have presented a generative approach to the creation of content management
systems that enables openness and dynamics of such systems.

As a solution to the problem of coordinating the various generators of soft-
ware artifacts for a content management system a design for a compiler frame-
work has been proposed.

Through application projects, we were able to verify that users are indeed
enabled to provide their personalized perspective [9] and that a dynamic response
to schema modifications is feasible [6].

In the future we hope to extend our approach in several respects. One of the
focal points is a possible feedback of generator runs on the asset model. Giving
such feedback will enable generators to interact with each other via the model
to distribute any additional constraints that might be necessary to impose on
the schema. An example of this is the length restriction of string fields. These
restrictions can arise from the use of a relational database for persistence. How-
ever, these restrictions need to be respected by all parts of the application, e.g.,
in presentation logic. There is, therefore, a feedback loop from the client module
generator providing additional information to the other generators. Currently
such information which is important to all generators has to be defined in the
asset model, violating its conceptual nature.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, third edition, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Uwe Assmann. Meta-programming Composers In Second-Generation Component
Systems. In J. Bishop and N. Horspool, editors, Systems Implementation 2000 —
Working Conference IFIP WG 2.4. Chapman and Hall, 1998.

. Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools for Implement-

ing Domain-Specific Languages. In Proceedings Fifth International Conference on
Software Reuse, pages 143-153. IEEE, 1998.

Jorn Bettin. Model-Driven Software Development: An emerging paradigm for In-
dustrialized Software Asset Development. Technical report, SoftMetaWare, 2004.
Sebastian Bossung, Hans-Werner Sehring, Patrick Hupe, and Joachim W. Schmidt.
Open and Dynamic Schema Evolution in Content-intensive Web Applications. In
José Cordeiro, Vitor Pedrosa, Bruno Encarnacdom, and Joaquim Filipe, editors,
Proceedings of the 2nd International Conference on Web Information Systems and
Technologies, WEBIST 2006, pages 109-116. INSTICC Press, 2006.

Johan Brichau. Integrative Composition of Program Generators. PhD thesis, Vak-
groep Informatica, Vrije Universiteit Brussel, 2005.

Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Topics in Information Systems. Springer-Verlag, 1984.
Matthias Bruhn. The Warburg Electronic Library in Hamburg: A Digital Index of
Political Iconography. Visual Resources, XV:405-423, 2000.

Peter P. Chen. The Entity-Relationship Model — Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9-36, 1976.

Gopal Gupta. A language-centric approach to software engineering: Domain
specific languages meet software components. In Electronic Proceedings of the
CoLogNet Area Workshop Series on Component-based Software Development and
Implementation Technology for Computational Logic Systems, Technical University
of Madrid (Spain), 19.-20. September 2002.

Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration with plug-
gable composite adapters. In Software Architectures and Component Technology.
Kluwer, 2000.

Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical Report
omg/2003-06-01, OMG, June 2003.

Joachim W. Schmidt and Hans-Werner Sehring. Conceptual Content Modeling
and Management: The Rationale of an Asset Language. In Perspectives of System
Informatics, volume 2890 of LNCS, pages 469—493. Springer, 2003.

Hans-Werner Sehring and Joachim W. Schmidt. Beyond Databases: An Asset
Language for Conceptual Content Management. In Proceedings of the 8th East
European Conference on Advances in Databases and Information Systems, volume
3255 of LNCS, pages 99-112. Springer-Verlag, 2004.

Yannis Smaragdakis and Don Batory. Scoping Constructs for Program Generators.
Technical Report CS-TR-96-37, Austin, Texas, USA, 1996.

Yannis Smaragdakis, Shan Shan Huang, and David Zook. Program generators
and the tools to make them. In PEPM °04: Proceedings of the 2004 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program Manipula-
tion, pages 92-100. ACM Press, 2004.

Pedro Valderas, Joan Fons, and Vicente Pelechano. Transforming Web Require-
ments into Navigational Models: An MDA Based Approach. In Proc. ER05, volume
3716 of LNCS, pages 320-336. Springer Verlag, 2005.

G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25:38-49, 1992.

