
Conceptual Content Management

for Enterprise Web Services

Sebastian Bossung, Hans-Werner Sehring, and Joachim W. Schmidt

{sebastian.bossung,hw.sehring,j.w.schmidt}@tu-harburg.de
Software Technology and Systems Institute (STS)

Hamburg University of Science and Technology (TUHH)

Abstract. Web services aim at providing an interoperable framework
for cross system and multiple domain communication. Current basic
standards are allowing for first cases of practical use and evaluation.

Since, however, the modeling of the underlying application domains is
largely an open issue, web service support for cross domain applications
is rather limited. This limitation is particularly severe in the area of
enterprise services which could benefit substantially from well-defined
semantics of multiple domains.

This paper focuses on the representation of user-specific domain mod-
els and on the support of their coherent interpretation on both client
and server side. Our approach is founded on the paradigm of Concep-
tual Content Management (CCM) and provides support for coherent
model interpretation by automatically generating CCM system imple-
mentations from high-level domain model specifications. Our approach
to CCM has been successfully applied in several application projects.

1 Introduction

In their current state of development, web services implement means for inter-
operable communication between computational systems and their components.
Such achievements are essential to most innovative systems. In the past there
have been several architectural attempts to improve component interface defi-
nition and their safe use (DCE, CORBA). Although web services have brought
several improvements by essentially lifting the matter from the component level
to that of reusable and interoperating services, there remain numerous open is-
sues. In particular, web services lack any substantial support for conceptual and
semantic modeling since current web service standards deal only with technical
aspects such as encoding of messages or addressing of certain operations.

Following the “find and bind” metaphor for web services, one of the major
visions is the automatic discovery of services given the client’s requirements. For
this end, conceptual and semantic models of web services are needed, and if only
for semi-automatic approaches to service discovery and safe service interoperabil-
ity. Since in the case of enterprise web services the involved application models
usually span several domains—human resources, finances, customer relations,

logistics, etc.—a shared model understanding and coherent use is particularly
relevant for the web service providers as well as for their clients [3].

In this paper we propose to apply Conceptual Content Modeling (CCM) to
the domain of web services expecting several benefits. For one, our approach al-
lows an explicit declaration of the domain model concepts and entities (instead of
declaring just technical types with little reusability, as in WSDL [17]). Secondly,
it supports a coherent interpretation of such domain models by all participating
parties through our generative CCM system implementation. Finally, personal
extensions of domain models are possible, and support is given to integrate ex-
tended interpretations with each other. We have a prototypical implementation
of web service support as part of our proven CCM technology.

The remainder of this paper is organized as follows: In section 2 we discuss the
shortcomings of plain web service technology with respect to its interpretation
of domain models. Section 3 gives a short summary of our CCM approach to
domain modeling. Some of the requirements for enterprise services which we feel
are not handled well by web service technology are discussed in section 4. In
section 5 we present our support for web services by means of CCM. The paper
concludes with a summary and some future research directions. Related work is
discussed where appropriate.

2 Service Semantics

An important paradigm for dealing with computational artifacts is that of func-
tional abstraction. Abstractions (also with respect to larger artifacts than func-
tions such as classes or components) allow the creator of the artifact to pass
along just the information that a user requires. Function signatures greatly en-
hance interoperability and are used within systems as well as for cross-system
communication. Prominent examples of the latter are CORBA interface defini-
tions and the Web Service Description Language (WSDL), but interface models
achieve little in providing semantics for a computational entity.

In order to bring together objects in a computer system and their domain
semantics, one needs to attach meaning to the former. One way to do this is
through ontologies (e.g. [4] with regard to enterprises). These are essentially
a vocabulary of terms with some specification of the meaning of each. Such
terms have to be combined with the objects in a computer system they describe.
Another possibility to describe the relationship of objects in a computer system
to their application domain is the use of a conceptual modeling (see e.g. [2, 6]).
We will introduce our conceptual modeling approach in the next section.

The web service standards that are in widespread use today (WSDL, UDDI,
XML Schema, etc.) mainly deal with the syntax of service communications.
Ontologies can be used to define the concepts a web service deals with. OWL-
S1 is an approach to modeling web services by means of an ontology. Modeling
frameworks like WSMF (Web Service Modeling Framework, [5]) can then make

1 http://www.daml.org/services/owl-s/1.1/

Fig. 1. Simple example of an asset model

use of this ontology to connect it to existing web service technology. While we
basically agree with this approach, there are several problems with it, mainly
centered around the way it causes semantics to be modeled. In particular we
would like to emphasize that:

– The domain model is specified from the point of view of the web service. That
is, input and output parameters of (possibly several) web services are given,
causing a partial domain model to be implicitly defined by the union of all
these parameters. Aspects that happen not to be needed for the collection
of web services at hand are not modeled, resulting in an incomplete and
difficult to understand “domain model”.

– Reuse of such definitions is difficult [17], especially with regard to their in-
completeness.

– Agreed-upon ontologies seem unlikely in the heterogeneous environment of
web services, but subjective views of different communication parties will
coexist (also see [9]). In the enterprise environment, this makes costly inte-
gration projects necessary [7].

– The proper implementation of the definitions (be they in ontologies or a
commonplace web service standard) is still left entirely to the developers at
both ends of the communication channel. Code generators for web services
can do very little to enforce correct use of the domain model if all they know
about this model are some fragments of XML Schema.

– In general, integration of ontologies into the rest of the system is not triv-
ial [10], with regard to the amount of legacy systems found in usual enterprise
environments this is even more evident.

In the next sections we detail how we deal with these problems in our Con-
ceptual Content Management Systems (CCMSs).

3 Conceptual Content Management

Entities from the real world—concrete as well as abstract ones—are often de-
scribed using content of various forms. However, these descriptions can only

be interpreted correctly with a conceptual understanding of the entity’s nature.
Therefore, entities must be described by a close coupling of content and concept,
which we call an asset. In this section we will briefly introduce the key concepts
of our asset language. More details can be found in [12–14].

3.1 Assets

Asset class definitions are organized in a model under the keyword model (fig. 1).
They describe entities in a dualistic way by means of content-concept pairs.
As an example, consider the definition of the class Person. In the content
compartment a list of (multimedial) content objects is given. Possible handle
types depend on the base language, which is currently Java. Content is treated
as opaque by an asset-based system. It could for example be a photographic
reproduction for a piece of art or an informal description (i.e., natural language
text) in the case of more abstract entities.

The concept compartment provides a conceptual description of the entity.
Characteristic attributes are those which are inherent to an entity (such as the
person’s name in the example), relationships are established between au-
tonomous entities (e.g., the person’s children). Note that attributes can be
single or multi-valued, as indicated by the asterisk (*). Finally, constraints can
be imposed on an asset class which are checked for all its instances. Constraints
are defined over Java expressions in the case of characteristics, by relationship
navigation, or by asset queries. Standard comparators (equal, less-than, etc.)
are interpreted based on a type dependent meaning. Constraint expressions can
formed by conjunction, disjunction, and negation.

Definitions from other models can be reused by importing them into a model
(from . . . import . . .). They can then also be used as basis of asset class
definitions, which is signified by the refines keyword.

3.2 Openness and Dynamics

Often—if not most of the time—different users will not be able to agree on an
asset class definition to model entities from the real world. CCMSs acknowledge
this fact by openness and dynamics. A system is open if its users are able to
change the asset definitions in case they do not agree with what they find. A
system is dynamic if it can react to such (re)definitions without requiring human
(i.e. programmer) intervention.

CCMSs are both open and dynamic, which allows users to have their own
subjective view of the world. Nevertheless, a CCMS also supports users in inter-
acting with other users who might have a different model of the same entities.
This is done with the help of mappings implemented in modules (section 3.3).

In the example of fig. 1 consider Mrs. Smith who is an editor at BigNews-
Agency. She largely agrees with the definition of News by her employer, but
would like to add a bit of information in her subjective view. To this end, she
creates her own PersonalNews which also stores the author. By means of the

server module

assets

data

adapted assets

base assets

local asset proxies

remote assets

unified view

view 1 view 2

external assets

internal assets

mediation module distribution modulemapping moduleclient module

Fig. 2. CCMSs are built from different kinds of modules

CCMS she is able to do so without the help of a developer. The system reacts to
her subjective view and incorporates it into its architecture (see next section).

3.3 Architecture

We have developed an architecture similar to the mediator architecture described
in [16] which our Conceptual Content Management Systems use. This architec-
ture makes use of five different kinds of modules arranged in layers and combined
into components. We refer to such a combination as a system configuration. Fig. 2
gives an overview of the modules along with their interfaces. For more details
please refer to [13, 14].

Such a system is generated by means of a compiler which is designed as a
framework. The framework incorporates a number of generators that create the
appropriate modules from asset definitions given by the user. The generators
exchange information on their output by an extended kind of symbol table, and
the framework synchronizes them according to their dependencies. Being avail-
able at runtime, the compiler enables a CCMS to react to user changes of asset
definitions and thus plays a crucial role in implementing dynamics. Section 5
gives details on a compiler configuration for creating web-service-enabled sys-
tems (with an example in fig. 3). Sample system configurations for web services
are also given in that section (specifically fig. 5).

4 Enterprise Conceptual Modeling

Enterprise applications work on large amounts of data which are crucial to their
proper operation. These data need to be understood and modeled properly in
order to enable the enterprise to do business. This section looks at three aspects
of enterprise-wide models: cross-domain cooperation, personalization of domain
models, and domain model evolution.

4.1 Cross-domain Cooperation

Developing enterprise applications consistently requires cross-domain coopera-
tion. Each participating enterprise will typically have at least one model of its
application domain [15]. This problem is reflected in the extensive literature on
integration problems in enterprise applications (see e.g., [8]). To enable commu-
nication, it is beneficiary to have a conceptual domain model for each of the

Fig. 3. Compiler Framework

partners. This greatly facilitates integration along the conceptual route and can
even be combined with reasoning on ontologies, see [10].

4.2 Different Understanding of Domain Concepts

Even if two enterprises work in the same general area, they normally have slightly
different understandings of their domain, yielding distinct but related models. In
order to enable these enterprises to do business with each other, it is necessary to
put their models into relation. There usually is a provider-requestor relationship
between the business partners (e.g., a seller and a buyer). This aspect makes is
feasible to describe one model as a personalization [11] of the other. A model of a
company might have different personalization relationships with several models
(importing from some, being the basis for others), which is not a problem when
models can be composed of several sub-models.

4.3 Evolution with Respect to Domain Models

Most implementation technologies assume the domain model to be fixed, any
modifications lead to a vast number of changes in almost all parts of the appli-
cation. Nevertheless, one of the most common things to do for a domain model is
to change. Reasons for this are manifold: Business circumstances might change,
users might not agree to the opinion of others, or new use cases may arise. This
calls for systems which support evolution of domain models in order to (a) al-
low changes in the first place (preferably in a way where most of the work is

Fig. 4. Personalized view of a client of BigNewsAgency

done automatically), and (b) provide clear semantics for such changes to enable
backwards compatibility to the old system.

5 CCM for Enterprise Services

The requirements from the previous section are met by CCMSs whose modules
are generated and configured accordingly. In our approach the basis for this is
not a computational model of the web services’ implementation, but a common
domain model which describes the entities in the enterprise. The invocational
details are left to standard web service technology.

Users wishing to set up a component participating in a CCMS use such a
domain model or a personalized variant of it. The properties discussed in the
previous section are available to asset definitions in form of the asset language. In
this section we illustrate this by giving a small sample asset model. From such
definitions CCMSs with the desired properties are generated. We will discuss
some basic configurations of such CCMSs and argue their benefits.

5.1 A Sample Asset Model

Fig. 4 shows a model that is defined on top of the model BigNewsAgency
introduced in fig. 1. In that model classes News and Person have been defined
as part of the model of a news agency. From some other given model Taxonomy
a class Classifier has been made available to classify instances of News.

A user working for Tabloid Press might use the model BigNewsAgency
in conjunction with a new model TabloidPress shown in fig. 4. This model
gives a new definition of the class News. For such news there now is a constraint
which requires news to be at most 5000 characters long (using a method of
the standard Java class java.lang.String) and to be classified under the
Classifier “Triviata” (with the operator “<=” interpreted as “subset of”,
its default interpretation for multi-valued relationships).

When starting the asset model compiler it receives both the models
BigNewsAgency and TabloidPress. It will generate modules for a configura-
tion where the new system holds instances of News, Person, and Classifier.
Having access to the original model the CCMS might be configured to interop-
erate with other systems which are based on the model BigNewsAgency, e.g.,
to take over existing News and to check whether they match the new definition.
Likewise, Classifiers might be retrieved from a remote system.

(a) (b)

Fig. 5. CCMS configurations for enterprise services. (a) Three-tier configuration with
application server and thin client, (b) Two-tier configuration with fat client

5.2 Sample CCMS Configurations

Fig. 5 shows two abstract sample configurations of CCMSs which meet the three
requirements outlined in section 3—cross-domain cooperation, personalization
of domain models, and their evolution. The asset models M1 and M2 shown in
the examples represent two domain models. Depending on the demands to be
met they can fill various roles as will be explained below.

Both systems outlined in fig. 5 show a client-server scenario incorporating
two components—one offering a service, and the other using it. Both client com-
ponents include a topmost server module by which the system is accessed. In
the case of an interactive client this server module would be a graphical user
interface, a web server, or the like. If the component is itself offering a web
service the server module will implement a web service interface. The client
components are based on a web service client module which sends request to
components providing a web service.

The lower part of each of the systems shown in fig. 5 constitutes such service
providers (WS server 1. . . 3). Both include a server module to accept web service
requests and a client module to access a third-party component. Instead of the

latter, web service client modules could be used if other services are used by the
service at hand.

The system shown in fig. 5(a) shows a typical three-tier scenario in which
a client component accesses a service on request. On the server side such a
request is analyzed by a mediation module as part of the application logic and
is delegated to a subsystem which handles either assets of a domain model M1

or a model M2.
Fig. 5(b) shows a configuration where the logic of using several servers and

combining assets resides on the client (“fat client”). Depending on the assets
involved, a web service request is sent to one of the server components WS server

2 or WS server 3 which host assets of models M1 or M2 respectively.
The asset models M1 and M2 shown in the examples represent two domain

models. Depending on their relationship different scenarios are realized. Exam-
ples of models are:

1. M1 and M2 represent two domains and M1 is integrated into M2; assets from
M1 are possibly adapted before they can be integrated into M2

2. M2 is a personalized variant of M1; assets in the public view represented by
M1 are lifted to M2 by a mapping module

3. M1 and M2 are revisions of a model, where M2 is the successor revision of M1;
by means of adaptation the assets from the outdated model are integrated
into the newer version

Thus, the examples shown in fig. 5 exemplify CCMSs with the contributions
outlined in section 4.

Other configurations of CCMSs than the ones indicated by fig. 5 cover dif-
ferent scenarios. E.g., assets from that part of the component WS server 1 that
handles assets of M2 could be adapted by an additional mapping module before
being integrated into one model through the mediation module.

5.3 Benefits of Systems Generation

More complete systems than those in the examples from the previous section
incorporate more layers in which mediation and mapping modules define the
application logic. In enterprise applications there will be a number of components
which use each other’s services. The service to use is chosen by a mediation
module as shown in the client component of fig. 5(b).

The key to the realization of the discussed system features—domain inter-
operation, personalization, and evolution—are the properties of openness and
dynamics. These features allow servers and clients to share models of the do-
main at hand while still being able to change the definitions. This is especially
important in enterprise systems as integration is expensive [7].

As pointed out in section 3 dynamics is achieved by generating all parts of a
CCMS from asset definitions using the asset model compiler. As all components
are generated on the basis of the same domain model, they interpret requests
coherently. This ensures that modules which form components of a system are

created in a fashion that allows them to interoperate: Either they share the same
domain model, or there are differences which some user stated explicitly. In the
latter case mapping modules which allow the interoperation of components based
on variants of a common domain model are derived from constraints describing
model interrelations.

In the case of web services, generation covers interface definitions in WSDL
as well as web service implementations in the form of server and client modules.
The WSDL declarations contain XML schema information for the types involved
which match the asset definitions. The web service operations are determined
by the generators and implemented by corresponding configurations.

The asset model compiler framework has been introduced in fig. 3. This figure
also shows several generators for the parts of a CCMS related to web services.
A WSDL specification matching the asset class definitions is produced by the
WSDL generator, while the server and client modules to provide and access
services are created by the generator named WS Impl. The WSDL generator in
turn uses XML Schema definitions created by the XSD generator which is also
used, e.g., to define the schema of an XML database. As every module conforms
to the uniform module API of CCMSs the generator for the web service server
and client modules also uses the API definitions given by the API generator.

6 Summary and Outlook

To achieve interoperability through web services, semantic and conceptual mod-
els are highly important. We have shown that in this respect much can be gained
by a coherent domain model which should be implemented in an open and
dynamic way. Specifically, domain model entities should not just be modeled
with respect to the service operations in which they are used. Supporting an
application-wide approach through Conceptual Content Management has sub-
stantial benefits, which we have outlined in this paper.

In the future we plan to enhance web service support for CCMS in several
ways. We will improve the coupling of web services (and possibly other tech-
nologies) with CCMS, for example in order to integrate legacy systems. Further-
more, the integration of standard web services (i.e., web services that are not
implemented in a CCM enabled system) needs to be addressed, especially with
regard to interoperability in an enterprise services environment. In a different
area, we are also working on bringing together ontology-based semantic mod-
els, description logics and CCMS. We see two approaches to be pursued: firstly,
description logics might be used to express the constraints in asset classes. The
implications of changing semantics from closed-world to open-world will have to
be explored. Secondly, with a mapping from asset class definitions to terms in
ontologies [1] it would be possible to reason on the level of classes in contrast
to performing model checking for given instances. This will require a mapping
from asset classes to terms in ontologies. We aim to employ description logics to
then perform reasoning in these systems.

References

1. Alex Borgida and Ronald J. Brachman. The Description Logic Handbook: Theory,
Implementation, and Applications, chapter Conceptual Modeling with Description
Logics, pages 349–372. Cambridge University Press, 2003.

2. Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Topics in Information Systems. Springer-Verlag, 1984.

3. Dov Dori. The Visual Semantic Web: Unifying Human and Machine Knowledge
Representations with Object-Process Methodology. In Proc. 1st Int. Workshop on
Semantic Web and Databases, 2003.

4. Fadi George Fadel, Mark S. Fox, and Michael Gruninger. A Generic Enterprise Re-
source Ontology. In Proc. 3rd Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 1994.

5. Dieter Fensel and Christoph Bußler. The Web service modeling framework
(WSMF). In Database and Information Research for Semantic Web and Enter-
prises, 2002.

6. Richard Hull and Roger King. Semantic Database Modeling: Survey, Applications,
and Research Issues. ACM Computing Surveys, 19(3), 1987.

7. Jinyoul Lee, Keng Siau, and Soongoo Hong. Enterprise Integration with ERP and
EAI. CACM, 46(2), 2003.

8. David S. Linthicum. Next Generation Application Integration: From Simple Infor-
mation to Web Services. Addison-Wesley, 2004.

9. Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou. Foundations for
Service Ontologies: Aligning OWL-S to DOLCE. In Proc. of the 13th Int. WWW
conf. 04. ACM, 2004.

10. Boris Motik, Alexander Maedche, and Raphael Volz. A Conceptual Mod-
eling Approach for Semantics-Driven Enterprise Applications. In Proc. of
DOA/CoopIS/ODBASE 2002, pages 1082–1099, London, 2002. Springer-Verlag.

11. Gustavo Rossi, Daniel Schwabe, and Robson Guimares. Designing personalized
web applications. In Proc. WWW 01, pages 275–284, New York, NY, USA, 2001.
ACM Press.

12. Joachim W. Schmidt and Hans-Werner Sehring. Conceptual Content Modeling
and Management: The Rationale of an Asset Language. In Proc. PSI 03, volume
2890 of LNCS, pages 469–493. Springer, 2003.

13. Hans-Werner Sehring. Konzeptorientiertes Content Management: Modell, Sys-
temarchitektur und Prototypen. PhD thesis, Hamburg University of Science and
Technology (TUHH), 2004.

14. Hans-Werner Sehring and Joachim W. Schmidt. Beyond Databases: An Asset
Language for Conceptual Content Management. In Proceedings of the 8th ADBIS,
volume 3255 of LNCS, pages 99–112. Springer-Verlag, 2004.

15. René van Buuren, Henk Jonkers, Maria-Eugenia Iacob, and Patrick Strating. Com-
position of Relations in Enterprise Architecture Models. In LNCS, volume 3256,
pages 39 – 53, 2004.

16. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25:38–49, 1992.

17. Jian Yang and Mike. P. Papazoglou. Web Component: A Substrate for Web Service
Reuse and Composition. In LNCS, volume 2348, page 21, 2002.

