
Conceptual Content Modeling

Languages, Applications, and Systems

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
genehmigte Dissertation

von
Sebastian Boßung

aus Marburg

2008



ii

Gutachter:
Prof. Dr. Joachim W. Schmidt
Prof. Dr. Heinrich C. Mayr

Tag der mündlichen Prüfung: 22. Februar 2008



Summary

Contemporary content management systems enable authors to express their intentions and
ideas not only textually but by means of a variety of multimedial artifacts. This enables dual-
istic descriptions of real-world entities as requested by the German philosopher Ernst Cassirer
(1874-1945). Cassirer’s symbols jointly describe entities by a conceptual model and a multime-
dial representation of the entity. Such dualistic descriptions have been successfully integrated
with conceptual models and are used as a foundation of content management systems.

The model presented in this thesis captures semantics of multimedial content in order to
provide dualistic descriptions of entities. It makes heavy use of content: as the subject of
explanation as well as to express semantics. Entities are also described conceptually whereby
individual pieces of content are related and rich descriptions of entities can be created. In
contrast to existing approaches, which are mostly aimed at computers, this work presents a
user-centric approach to providing dualistic descriptions of real-world entities.

The objectives discussed above are approached by a concept-oriented content model which
concentrates on making ASSociations between its terms Explicit and Transitive (ASSET).
Asset Expression language and systems provide three contributions: (1) The language to create
Asset Expressions uses a few simple-to-understand paradigms and is easily transformed into a
visual representation for the user. (2) Enhancements to Asset Expressions facilitate the creation
of semantic descriptions and the collaboration between users. (3) Processes are available to
work with these descriptions, e.g., to guide the mapping of description networks onto software
systems that are based on conceptual schemata.

While Asset Expressions syntactically borrow from the λ-calculus, it is not their main
purpose to be reducible like λ-expressions. Instead, Asset Expressions denote real-world entities
by decomposing their descriptions. The result of this denotation is the idea of the denoted
entity in the mind of the viewer. Therefore, it is usually counter-productive to only present a
reduced form to the user. While the textual syntax of Asset Expressions is similar to that of
the λ-calculus, any medial content is considered a literal and shown directly in the expression.
Asset Expressions can easily be transformed into a visual representation that is more appealing
to humans.

Abstractions over medial content point out aspects of the entity that need further expla-
nation, for example a person shown in a picture. The purpose of an abstraction is to create
structure in the description by making explicit some of the entity’s elements. Applications
connect abstractions to further Asset Expressions and thus provide the explanations requested
by the abstractions, for example a rich model giving details about the person. Content can
be sub-structured into content components over which abstractions can be made to signify the
aspect of the entity the abstraction refers to.

Semantic types are used to type Asset Expressions. Types are assigned to abstraction
variables and to content. Semantic types have no structural effect on the expression they
type: They do not prescribe a certain set of abstractions. The purpose of semantic types
is to introduce some semantic restrictions on explanations to reduce the danger of defining
meaningless expressions. To facilitate the collaboration of users, templates (called traits) for

iii



iv

sets of abstractions along with a semantic type for the expression can be defined. Traits guide
the creation of new expressions leading to similar structures in related expressions.

Large numbers of expressions can be created to model an application domain. To retrieve
expressions from a larger set or to select parts of existing expressions to create new ones, an
Asset Expression Query Language is available.

Asset Expressions provide their users with the means to flexibly model entities from an
application domain. Asset Expression Systems offer a generic platform to handle the lifecycle
of Asset Expressions. In these systems, application domains are modeled extensionally, i.e.,
by the body of expressions in the domain. To create a software system for a domain that is
modeled with Asset Expressions, a conceptual schema can be extracted from the expressions by
a user-centric schema construction process, which is run by the domain experts who provided
the expressions. The process automatically creates large parts of the schema and prompts
the domain experts with particular questions without the involvement of a modeling expert.
Feedback is given in the form of prototype software systems, which allow the assessment of the
practicability of the schema.



Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Representation of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Entity Descriptions in Information Systems . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Capturing the Meaning of Content . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 System Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Approach to Solution and Overview . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Context of This Work 13

2.1 Data Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Persistent Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Persistency in Programming Languages . . . . . . . . . . . . . . . . . . 15
2.1.3 Assets: Dualistic Description of Entities . . . . . . . . . . . . . . . . . . 17
2.1.4 Conceptual Content Management . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Semantic Models for Multimedial Content . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Structured Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Hypermedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Semantic Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Introduction to Some Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 XML Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 XML Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 XML Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Core Asset Expression Language 43

3.1 Plain Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Visual Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Content Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Selectors in Different Kinds of Content . . . . . . . . . . . . . . . . . . . 53

3.3 Typed Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Semantic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



vi CONTENTS

3.3.2 Type Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.5 Rationale of This Type System . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.6 Typing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Extended Asset Expression Language 67

4.1 Traits for Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Asset Expression Query Language . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Navigating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Handling Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Mention-Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Use-Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Piece-Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Normal Form with Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Content Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Notes on the Use of Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Multiple Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.2 Openness and Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Systems for Asset Expression Support 85

5.1 Scope of Asset Expression Systems . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 A General Architecture for Asset Expression Systems . . . . . . . . . . . . . . 86

5.3 Storage Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Semi-structured Data Model for Asset Expressions . . . . . . . . . . . . 89

5.4 Manipulation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Content Kind Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Persistency Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.4 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.5 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Presentation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 Automatic Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Asset Expressions and Conceptual Schemata 101

6.1 Intensional Typing of Asset Expressions . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.2 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.3 Types for Characteristics and Content . . . . . . . . . . . . . . . . . . . 106

6.1.4 Typing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Converting Asset Expressions to Asset Instances . . . . . . . . . . . . . . . . . 108

6.2.1 Translation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.2 Conversion of Content Components . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Convertible Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS vii

7 Pragmatics 113

7.1 Type Inference for Semantic Types . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.1 Representation of Signatures . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1.2 Reasoning for Signature Matching . . . . . . . . . . . . . . . . . . . . . 116
7.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Type Inference for Intensional Types . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1 Lessons Learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Process Support for Openness and Dynamics . . . . . . . . . . . . . . . 127
7.2.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.4 Quality of the Created Schema . . . . . . . . . . . . . . . . . . . . . . . 136

8 Application Example 139

8.1 The Application Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Asset Expressions for Domain Entities . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Semantic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.4 Collaborative Creation of Expressions . . . . . . . . . . . . . . . . . . . . . . . 143
8.5 Conceptual Schema and Information System . . . . . . . . . . . . . . . . . . . . 145
8.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Summary and Discussion 149

9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Comparison with Related Approaches . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.1 Descriptions of Medial Content . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.2 Schema Creation Processes . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 160

Index 179



viii CONTENTS



List of Figures

1.1 Symbols as combination of content and concepts . . . . . . . . . . . . . . . . . 4
1.2 Dualistic description of entities by Assets . . . . . . . . . . . . . . . . . . . . . 6
1.3 Structure of this thesis around Asset Expressions . . . . . . . . . . . . . . . . . 10

2.1 Sample of relational data and query . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 DBPL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Query expressed as a set comprehension . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Module setup for personalization . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Typing rules of the simply typed λ-calculus . . . . . . . . . . . . . . . . . . . . 23
2.6 Ontology spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 The On-To-Knowledge meta-process . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Markup used for typesetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 An annotation and its base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Conceptual annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 Linking among hypermedia documents in a web-based hypermedia system . . . 33
2.12 A simple RDF example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.13 The Caliph tool for capturing MPEG-7 media description on photographs . . . 36
2.14 MPEG-7 Semantic Description Scheme . . . . . . . . . . . . . . . . . . . . . . . 37
2.15 XQuery example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Asset Expressions model entities from the real world . . . . . . . . . . . . . . . 45
3.2 Connecting function parameters to body variables . . . . . . . . . . . . . . . . 50
3.3 Component examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Image with two persons in different roles . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Content kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Abstraction over a component in XML content . . . . . . . . . . . . . . . . . . 56
3.7 Chaining selectors for heterogenous content . . . . . . . . . . . . . . . . . . . . 59
3.8 Amount of abstraction and specificity of semantic types . . . . . . . . . . . . . 60
3.9 Visual notation for typed Asset Expressions . . . . . . . . . . . . . . . . . . . . 62
3.10 Semantic typing of Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Traits as combination of abstractions and semantic type . . . . . . . . . . . . . 68
4.2 Abstract syntax tree representation of an Asset Expression . . . . . . . . . . . 71
4.3 Sub-expressions included by the different paths . . . . . . . . . . . . . . . . . . 72
4.4 Content construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 A large Asset Expression network . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Combination of semantic types from multiple domains . . . . . . . . . . . . . . 80

5.1 Three-tier architecture for a system based on Asset Expressions . . . . . . . . . 87
5.2 Logical view of the semi-structured data model for the storage layer . . . . . . 88
5.3 Workspace and its user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



x LIST OF FIGURES

5.4 Workspace scenario of teacher-student collaboration . . . . . . . . . . . . . . . 90
5.5 Content kind registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Lifecycle of Asset Expressions in the persistency layer . . . . . . . . . . . . . . 93
5.7 Asset Expression editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8 Drag-and-drop between workspaces . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Automatic layout of Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Conversion of freely modeled expressions into intensional instances . . . . . . . 102
6.2 Intensional typing of Asset Expressions . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 An Asset model for content components . . . . . . . . . . . . . . . . . . . . . . 111

7.1 Knowledge representation system . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Hierarchy of semantic types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Example of an Asset Expression signature modeled in description logic . . . . . 116
7.4 Concept contraction examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.5 Concept abduction examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Semantic type hierarchy for inference example . . . . . . . . . . . . . . . . . . . 122
7.7 Expressions for semantic type inference example . . . . . . . . . . . . . . . . . 123
7.8 Semantic type inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.9 Incompatible personalizations in GKNS . . . . . . . . . . . . . . . . . . . . . . 126
7.10 Process for openness and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.11 Information system generation from Asset Expressions . . . . . . . . . . . . . . 130
7.12 Expressions with coinciding structure and their allocation to classes . . . . . . 132
7.13 Component configuration for schema evolution . . . . . . . . . . . . . . . . . . 134
7.14 Combination of AES and CCMS . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.15 Dimensions of conceptual schema quality . . . . . . . . . . . . . . . . . . . . . . 137

8.1 Venia Legeni for Ludwig Heydenreich . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Reuse of domain entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 Summary of semantic types from GKNS . . . . . . . . . . . . . . . . . . . . . . 143
8.4 The GKNS user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.5 Screenshot of the data entry tool from the GKNS project . . . . . . . . . . . . 146
8.6 The architecture of the GKNS system . . . . . . . . . . . . . . . . . . . . . . . 147

9.1 Design principles of the Asset Expression approach . . . . . . . . . . . . . . . . 150
9.2 Richness and formality of modeling paradigms . . . . . . . . . . . . . . . . . . 157



List of Tables

1.1 Examples of syntactic, semantic, and media objects . . . . . . . . . . . . . . . . 2
1.2 Panofsky’s methodology of three description levels . . . . . . . . . . . . . . . . 5
1.3 Classification of information systems based on Panofsky’s levels of description . 7

3.1 Examples of selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Selector kinds for plain texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Selector kinds for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Selector kinds for audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Spatio-temporal description features in MPEG-7 . . . . . . . . . . . . . . . . . 58
3.6 Examples of expressions and their type . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Axes available in AEQL and the corresponding expressions . . . . . . . . . . . 71
4.2 Paths of AEQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Content substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.1 Comparison of approaches to interrelate content and/or capture its semantics . 152

xi



xii LIST OF TABLES



Chapter 1

Introduction

Contemporary content management systems enable their users to express ideas and intentions
not only textually but by means of a variety of multimedial artifacts. These artifacts capture
meaning and pass it on to the future viewer of the artifact. The philosopher Ernst Cassirer
notes ([Cas00], citation after [Sch06]):

“What is actually preserved to us of the past are specific historical monuments—
‘monuments’ in words and writing, in image and bronze. This becomes history for
us only once we begin to see in these monuments symbols not only in which we
recognize specific forms of life, but by virtue of which we are able to restore them
for ourselves.”

Cassirer points out that past creations of artists (or—in general—authors) are manifest in
‘monuments’ which need to be brought back to life (i.e., be interpreted in the correct context by
the viewer) to become history. Traditionally, such monuments are works such as paintings, stat-
ues, or even music. With the widespread availability of technology to digitally create, handle,
and manipulate multimedial content, the importance of digital representations of monuments
in multimedial content increases.

Many software system today use multimedial content to accomplish their task. News web
sites, e.g., present images and video alongside textual descriptions. It is, however, common
for these software systems to treat multimedial content as essentially a raw array of bytes, for
which system support is limited to storing and retrieving. Tools for creation and manipulation
of content—which must be aware of the parts it is composed of—are usually available externally.
If meaning is conveyed in the content, this meaning is not made explicit in the software system.
Users of the system reinterpret the content every time it is presented. If the system cannot
assist in determining its meaning, pitfalls are manifold. A particular user might misinterpret
the content because of wrong assumptions about the context it should be perceived in. Other
users might not be able to make sense of the content at all, lacking crucial information.

In recent years capturing the semantics of multimedial content has gained increasing interest
from Computer Scientists. As computational resources and the knowledge of using them have
become ubiquitous to content creators [GB05], large collections of various content have emerged
stressing the need for system support that extends beyond mere storage and retrieval.

To provide such support content management systems should capture the semantics of
multimedial content together with the content. Application scenarios span from machine-
interpretable medial content—which can for example be automatically classified—all the way
to the description of semantics for human users to share an understanding of the content that
non-expert users might not have. Capabilities of systems supporting such scenarios therefore
need to include:

1



2 CHAPTER 1: INTRODUCTION

Syntactic objects Semantic objects Media Objects
Scott Numerals Peano Axioms Number notations

Defined in λ-expressions:
zero := λf.λx.x
succ := λn.λf.λx(f)((n)f)x

– 0 is a natural number.

– Every natural number a
has a single successor, de-
noted by succ(a).

– ...

fonts and notation sys-
tems

λf.λx.(f)(f)(f)x succ(succ(succ(0))) Roman: III
Arabic: 3
Binary: 11

Table 1.1: Examples of syntactic, semantic, and media objects

• The means to capture real-world entities in a computer system by providing multimedial
representations of the entities and of their semantic descriptions.

• Aiding users—computers or humans—in understanding these entities when presented
with the captured descriptions.

In the case of a human user it is assumed that the understanding still has to happen in
the mind of the human who cannot be provided with “pre-understood” content. However, the
goal is to make the process of understanding as simple as possible, e.g., by providing visually
helpful co-occurrences which the user can “mentally compile and decipher” [Dor03].

When representing entities in a computer system, a typical way to deal with complexity
is the structural decomposition of the entities and the creation of networks of such entities.
Structural similarities discovered by decomposition are described in a conceptualization of the
application domain. This approach is for example taken in class-based conceptual models that
define classes as an aggregation of attributes.

Other fields—for example that of programming languages—suggest that the endeavor of
capturing semantics is not entirely hopeless. Numbers are a part of most programming lan-
guages but their semantics are easier to describe than those of the language as a whole. They
will thus serve as an example here. There are syntactic objects, namely the numerals which are
expressed in some language, for example in the λ-calculus as Scott numerals [Sto77]. These
are shown on the left in table 1.1. The syntactic objects have no intrinsic meaning, but there
should be (and is in the case of numerals) a mapping to semantic objects which is so easy
to understand that it seems trivial to the audience. The semantic objects in the example
are numbers as defined by the Peano axioms. Finally, media objects—such as Arabic or Ro-
man numbers—provide appealing access to human users. Given a certain familiarity with the
formalism, humans develop a direct mapping of media and semantic objects. The degree of
directness of this mapping highly depends on the appropriateness of the media objects and
training of their use.

In the context of system support, the triple of syntactic, semantic, and media objects can
be used in the following way: Syntactic objects can be manipulated by the system, they thus
need to be expressed in a formalism suitable to the intended manipulations (e.g., arithmetics
in the example of numbers). Human users use media objects to interact with the system in
which a part of the application domain is represented. This application domain is defined by
semantic objects.

Multimedial content is first of all a media object. A system can present such content to
human users who make sense of it by interpreting it in the context of their available knowledge.
For human users, the backing of media objects with semantic objects will remain in the mind of



1.1 REPRESENTATION OF ENTITIES 3

the user. The system can, however, be equipped with syntactic objects which allow some ma-
nipulations of media objects such that the cognitive load on the user can be reduced. Suitable
syntactic objects, their mapping to media objects, and means to facilitate the recognition of the
corresponding semantic objects by the user will be developed in this thesis. Several approaches
to semantics exist (most prominently axiomatic, denotational, and operational semantics, see,
e.g., [Sto77] for an overview). The research and development in content management systems
presented in this work combines all three kinds of objects—syntactic, semantic, and media
objects—and uses the denotational approach for content modeling.

The term “content” has been used informally above. Its general English meaning is the “sig-
nificance or meaning of something” [Web90]. Therefore it is clear that “multimedial content”
actually refers to a “multimedial content representation” as it would make little sense other-
wise. This differentiation of content and content representation is often not made in literature
because it is usually apparent from the context which is meant. The terminology below will
continue in this fashion, by using the much shorter “content” instead of “multimedial content
representation”.

It should also be pointed out that the notion of multimedial content adopted here is rather
broad. Not only does it include audio and video—which are commonly associated with the
term—but any medium that can be used to convey meaning. Examples thus include formatted
or plain texts, three-dimensional models, still images, and combinations thereof. Primitive
values (e.g., numbers, character strings, dates, . . . ) are also considered cases of multimedial
content. One can then create a coherent modeling paradigm that does not need to differentiate
“primitive values” and “medial content”.

1.1 Representation of Entities

Information systems1 are usually built to create a model of some part of the application domain
(see, e.g., [BMS84, Bor85]). To this end, the entities of the domain are described abstractly in
a model. The model defines the means available within the system to represent real-world enti-
ties. Applications of such models are manifold and can be found almost anywhere large amounts
of data need to be handled, e.g., in enterprise management systems [EP00], e-commerce appli-
cations [DTOP02], or research support systems [SBS05].

Since the introduction of conceptual modeling [Che76, BMS84] the approach of building
domain models as a conceptual basis for information systems enjoys widespread popularity.2 In
general, conceptual modeling techniques provide means to abstractly describe the application
domain by combining simple structures into larger ones. These structures can usually be
related and the process can be repeated to create even more complex models. An important
difference of conceptual models and, e.g., type definitions in programming languages is that
conceptual models emphasize capturing the application domain without paying attention to
implementation details.

The creation of conceptual models is only weakly formalized and resembles—in large parts—
more the creation of a work of art than the application of well understood principles [Hal01, 1.1].
To a lesser degree this problem also exists for the later creation of model instances to describe
particular elements of the application domain. Both processes are not yet fully understood.

A dualistic occurrence of abstract conceptual model and individual medial representation
of a real-world entity seems to be essential for the representation and successful understand-
ing of models of the real world. In fact, Ernst Cassirer notes [SR02] that it is necessary to

1“An IS [Information System] is a complex system whose raison d’etre is the set of interactions that it carries
out with its environment.” [GST00] For these interactions it is usually necessary to model some part of the
environment, i.e., the application domain, inside the system. ISs therefore usually contain models of entities
found in their environments. Content Management Systems (CMSs) are a particular kind of IS that put special
emphasis on the support of multimedial content.

2The university of Klagenfurt has compiled a website listing many important steps in the history of conceptual
modeling [SMBP].



4 CHAPTER 1: INTRODUCTION

Figure 1.1: Combination of individual entities which are represented by content and concept
to form symbols.

conjointly describe entities by medial content as well as by conceptual abstraction to appropri-
ately capture an entity from the application domain. Cassirer calls the combination of content
and concept a symbol (figure 1.1). Symbols by nature need to be defined as pairs of content
and concept, either alone is not enough. The concept has no purpose without the backing
by actual instances (represented by medial content) as it stands alone as a purely ficticious
concept with no relevance in the application domain. Conceptualizations thus require support
through (extensional) definitions by medial representations. Medial representations without
conceptualization do not provide much value to humans either. They tend to be perceived as
an opaque blob of medial features which conveys no meaning because the individual features
cannot be cognitively processed for lack of conceptualizations.3 To further reduce the com-
plexity of descriptions higher-level concepts can be formed. These describe the commonalities
of several concepts in an abstract manner.

Examples for the dualism of concept and content can be found in human cognitive processes,
which are Cassirer’s domain of discourse [Cas01]. Our vision provides us with an image of our
surroundings similar to a photograph. This image is composed of various entities. However,
we can only recognize these entities if we are familiar with the appropriate conceptualizations.
An entity for which no conceptualization exists, because it is unlike anything we have ever seen
before, is likely not to be recognized as a discrete entity but just blends with other parts of
the image. If the entity reoccurs several times, our mind might be triggered to create a new
conceptualization for it that is filled with increasing amounts of detail as we learn about the
entity. Therefore, Cassirer does not assume a fixed set of predefined concepts [SR02].

An important insight of Cassirer is that new concepts are formed and existing ones are
modified in a continuous process. This process is open and dynamic in nature [Seh04]. It is
open because it allows the extension of the existing set of concepts to suit new description
needs and also allows the modification of description instances. It is dynamic because such
extensions and modifications can be carried out at any time. Cassirer thereby accounts for the
collection of new perceptions and cognitions.

Through their joint description of an entity, medial content and conceptual descriptions
do not just stand side-by-side but are interrelated in a symbol. The conceptual abstraction
of an entity describes aspects shared by several instances; the medial content resprents the
individual entity. Conceptual abstraction and content together form an integrated symbolic
entity representation. The dualistic descriptions are related to other descriptions of their kind,
forming a network. When capturing meaning in a network of descriptions as requested by
Cassirer, medial representation and conceptual abstraction jointly describe entities from the
application domain. Therefore, a structurally rich way to capture explanations of content is

3An example of this is listening to a conversation in an unfamiliar language.



1.1 REPRESENTATION OF ENTITIES 5

Pre-Iconographical
Level

Iconographical Level Iconological Level

generic specific abstract

Subject matter identifiable objects analysis based on
domain knowledge

interpretation based
on deep cultural
knowledge and
understanding

Example colors, primitive
shapes

particular humans religion

Table 1.2: Panofsky’s methodology of three description levels [Pan70].

needed to provide system support for such descriptions. Its requirements will be discussed in
more detail in section 1.3.

Several researchers have considered which types of information can be conveyed by an
image. Many base themselves [CR03] onto the work of Erwin Panofsky [Pan70]. Panofsky
distinguishes three levels: pre-iconographical, iconographical, and iconological (table 1.2). The
pre-iconographical level describes factual matters that are “apprehended by identifying pure
forms”.4 These matters can be understood based on everyday experience. Examples are colors
and simple objects which are indifferent to culture. The second level is the iconographical
level. This level requires domain knowledge to analyze combinations of factual matter from
the pre-iconographic level: “We connect artistic motifs and combinations of artistic motifs
(compositions) with themes or concepts.” Descriptions on the iconological level are based
on cultural knowledge and a deep understanding of the application domain “by ascertaining
those underlying principles which reveal the basic attitude of a nation, a period, a class, a
religious or philosophical persuasion.” Consider an image of the crucifixion of Christ as an
example. The image contains pre-iconographical aspects such as wooden bars and a male
person, iconographical ones such as Jesus Christ or the crucifixion, and iconological ones such
as religion and suffering (example after [Wes04]).

Others have developed schemes that are similar to Panofsky’s. Shatford Layne [Lay88]
distinguishes ofness and aboutness. Ofness is analogous to Panofsky’s pre-iconographical level
as it has to do with objects identifiable in the image itself. Aboutness corresponds to the
iconographical level where an analysis based on domain knowledge is performed to find out
what the image is about.

To create models of entities, one can, according to Charles Sanders Peirce [Pei31], rely on
three dimensions. Peirce calls these firstness, secondness, and thirdness to avoid terms that
already carry meaning:

1. Firstness: Entities are described in this dimension by properties which are inherent to
the entity. These are also called characteristic properties. Examples are the physical
dimensions of an object, the colors of a painting, etc.

2. Secondness: Describes entities in terms of their relationships to external entities. Sec-
ondness properties are not intrinsic to an entity as they result from two or more partners
which are both entities of their own. The siblings of a person are an example of a
relationship between entities.

3. Thirdness: Principles or constraints about entities are covered in this dimension. Third-
ness is, for example, about the regularity of attributes of entities. Possible future com-
binations in the secondness dimension are determined by principles described in the
thirdness. The fact that all adults are above a certain age is an example of an entity
description in the thirdness dimension.

4All literal citations in this paragraph from [Pan70, chapter 1].



6 CHAPTER 1: INTRODUCTION

Figure 1.2: Dualistic description of entities by Assets [Seh04]. An Asset describes a real-
world entity and is composed of content and concept. The two parts provide a media and a
model view of the entity.

Dualistic representation of entities as demanded by Cassirer can be combined with the de-
scription dimensions of Peirce in a paradigm to conceptually model real-world entities. An
example of such dualistic respresentations are Assets [Seh04], which combine a medial and
a conceptual model view on the entity, see figure 1.2. In accordance with Peirce, the con-
ceptual view is composed of the characteristic properties (firstness), relationships with other
entities (secondness), and constraints on the entity which regulate future states of description
(thirdness).

1.2 Entity Descriptions in Information Systems

Database management systems (DBMSs) provide well-understood means to efficiently store,
manipulate, and retrieve data. Data in these systems can represent domain entities, however, no
information is provided about the nature of such a representation. DBMSs excel at composing
data of a few primitive types that are combined regularly, for example in the relational data
model [Cod70]. On this data, DBMSs provide isolated access in the sense that even though
multiple users might be working in the system at the same time, the goal is to create the
impression of being alone in the system to each single user. Despite the lack of semantic
descriptions of data and the goal of isolation of users, DBMSs are often incorporated into
systems that provide user collaboration. Such information systems (IS, [GST00]) add semantics
to the data in the database by interpreting them in a consistent way. They also implement
collaboration facilities for users by combining means available from the DBMS with other
services.

The interpretation of data in a consistent fashion is a central feature of an IS. To this
end, ISs are often based on a conceptual model of the application domain which captures the
necessary semantics. These semantics then need to be observed throughout the implementation
of the system. In most ISs these semantics are assumed to be fixed. In fact, they already
exist before the implementation of the system is started, thus forming its basis. This violates
Cassirer’s assumption that conceptual models should be extendable as one’s understanding of
the application domain evolves. Systems which account for such an evolution of the conceptual
model need to make the modeling facilities explicit to allow their users to modify the model
when the need arises. A change in model tears down the foundations of an IS if it has been
implemented by traditional means. To survive such a change in a semantically consistent
manner, systems need to react to the new model by making it their new foundation.

A system’s support for entity representation can be classified according to Panofsky’s levels
of description as summarized in table 1.3. At the pre-iconographical level, databases support
entity description by means of values from common domains. These domains must be shared
knowledge between all users as the database does not provide models of the domains. In the
relational model, which is the most common database modeling paradigm today, entities are



1.2 ENTITY DESCRIPTIONS IN INFORMATION SYSTEMS 7

Level System Description means

pre-iconographical Database management
systems

Combinations of common
domains, e.g., numbers, dates

iconographical Information systems with
fixed model
e.g., digital libraries

Conceptual model which exists a
priori and describes application
domain as foundation of system

iconological Information systems with
open model
e.g., conceptual content
management systems

Conceptual model which is open
to user modification; appropriate
response of the system

Table 1.3: Classification of information systems based on Panofsky’s levels of description

described as tuples composed of primitive values. In most implementations these values can be
from the domains of numbers, character strings, dates, and sometimes also from more specific
domains such as geographic points. Tuples of identical structure are aggregated in relations.
While relations can be named, this name is rarely sufficient to describe the semantics of the
relation. Moreover, the limitations of many implementations—e.g., length restrictions on the
name—often enforce meaningless names that allow very little conclusions to be drawn as to
the semantics of the relation. Queries can be posed on the pre-iconographical level in terms of
primitive values, for example value restrictions on numbers or the colors occurring in pictures
if the system is a multimedial database.

Descriptions at the iconographic level require expressiveness in the terms of the application
domain. Information systems offer these means to their users, usually based on a conceptual
model of the domain. In most contemporary software engineering methodologies this model is
hand-crafted into the system by a manual transformation of the model into code. Model-driven
methodologies—which are currently the topic of much research [MM03, Sel03]—automate this
transformation to a large degree. Nevertheless, the model is inherently coupled with the system.
Both approaches to system development require the model to exist before implementation can
begin. Queries on the iconographical level are given in the terminology of the model. This
often does not only comprise generic query facilities (such as retrieving all tuples with value
x from a relational database) but domain-specific queries (such as finding all persons in a
certain role) which might not be easily decomposed into queries on primitive values. This
decomposition must, however, be ultimately possible as iconographical descriptions are usually
broken down into pre-iconographical descriptions. Another example of an iconographical query
is the detection of larger entities in content (e.g., athletes in sports videos as in the currently
ongoing Boemie project [SPK+05, Boe07]).

Iconological descriptions of entities in an information system are based on deep cultural
knowledge. Such interpretations of the application domain are the result of an understanding
which influences the description of the domain. An open model as a basis for an information
system can support this process as the system needs to adapt to the insight gained in the
process. Additionally, it is necessary to incorporate cultural knowledge. As an example,
classification taxonomies can capture this knowledge but at the same time can be modified
according to the current understanding of the domain. Access to information on the iconological
level does not only mean access in terms of the application domain but rather through this
domain because the available information is provided in the shape of the current model. As
the iconological level includes cultural aspects, it can be expected that groups of users will not
always be able to agree on a common model for the description of entities. Providing each
user with the opportunity of having a personal, subjective conceptual model of the entitiy—
and therefore of the part of the real-world that is modeled in the system—allows users to



8 CHAPTER 1: INTRODUCTION

collaborate to the extent they agree on a common model, but also to co-exist separately in the
remaining differences.

Access to entities on all three of Panofsky’s levels is important to answer all types of
questions from users. In a study in 1988 [Mar88] it was observed that (then current) information
systems largely provide access to pictorial resources on the iconographical or even on the
iconological level. This was found to be problematic for people who are not sufficiently familiar
with the system’s classification or subject heading schemes. If alternative access paths do not
exist, such users are essentially locked out of the system. As a remedy it is proposed [Mar88]
to put more emphasis on pre-iconographical access paths to the system. However, many users
do not want to query for just anything of a certain color or texture, but for larger semantic
entities [HTS+06], requiring iconographical or iconological access paths. Integrated access
means on all three levels is therefore highly desirable.

1.3 Research Objectives

Capturing real-world entities by medial content is of most benefit to users if done on all three of
Panofsky’s levels in an integrated fashion. Based on such descriptions, access can be provided
to users on all levels. The work presented here focuses on a user-centric approach to providing
such descriptions. Very briefly, the objective is to ...

Develop a structurally rich way to capture explanations of content.

This goal will be elaborated below. While the primary audience of the approach consists of
human users, computers also need to be addressed because descriptions of multimedial content
are best given and handled in a computerized system. On top of this, traditional information
systems have benefits of their own—such as distribution, persistency, and access control—which
should be made available without reinventing too many wheels.

There exist several approaches that provide semantic descriptions of multimedial content
to computers, some of which are discussed in section 2.3. However, human users usually find
it difficult to directly work with these semantic descriptions because of mainly two reasons:

1. The structural complexity of the descriptions is commonly high. The description paradigms
are intended to capture information and make it available to a machine. Moreover, the
paradigms are often chosen because they are easily processable by the machine, resulting
in structures that are difficult to understand for human users [SM99, MGMW05].

2. The descriptions given of a multimedial content are too detailed. Many of the details that
need to be given explicitly to a machine as a basis for some understanding are obvious
to humans [NM06]. Therefore, the details of the resulting large descriptions can hide the
actually interesting information.

The remainder of this section will outline some requirements to a human-centric approach to
capture meaning of multimedial content and the support of this approach by computer system.
The latter goal is not the same as the description of multimedial content to computers.

1.3.1 Capturing the Meaning of Content

To capture meaning of content—especially if this is to be done in a visually rich manner—one
must first be able to capture the multimedial content itself. With vast amounts of work on
encodings, multimedia databases, and so forth available, current content management systems
excel at storing and retrieving content of various formats. A variety of transformations on
content are also available at what is the pre-iconographic level to computers (pixels, audio
samples, or strings of text). These capabilities must be available to users, either directly or by
interfaces to existing technology.



1.3 RESEARCH OBJECTIVES 9

Next, if a “structurally rich way to capture [...] content” is sought, content must be de-
scribable not only as an opaque whole. Instead, means to identify and refer to parts of this
content are needed. To address parts of content, different addressing schemes depending on
the type of content (e.g., two-dimensional images, video, etc.) are available in existing work
and can be incorporated. Exploiting the substructure of content in the opposite direction, a
mechanism should also be available for the construction of content.

As the content is now readily at hand and even richly structured, one can proceed to capture
its meaning. Focussing on human users, a common use case will be to bring descriptions
captured by one person (called prospector) to the understanding of another (called inspector).
To this end, the prospector must be able to provide any additional information that is required
to understand the content (an explanation). The prospector creates expressions which explain
the content, possibly also relating them to some particular part of the content—as designated by
the rich substructure. For reasons of orthogonality, details of explanations should be supplied
using the same mechanism as is used to describe the original content. This will serve to create
whole networks of interrelated expressions.

Prospectors then enjoy an extensive freedom in creating descriptive expressions from con-
tent. While this enables them to always explain everything in the way most appropriate to
content and audience at hand, prospectors have to exercise special care not to produce in-
valid or meaningless explanations. A similar problem exists in programming languages where
users can combine language primitives in any way permissible by the syntax. Programming
languages supply type systems which allow users to add some application knowledge which
can then be enforced onto the constructed program by a type checker. This prevents a large
number of—usually accidental—senseless constructs. Creating similar mechanisms to assert
some semantic restrictions for the explanations of content can yield analogous benefits.

1.3.2 System Support

Working with multimedial content is much easier within specialized computer systems. De-
scriptions, which are created as outlined above, can be supported by such systems in two ways.
First of all, a dedicated system allows prospectors to handle, structure, and describe content
in order to build the explanatory networks necessary to capture the meaning of the content for
inspectors. In addition, large advances have been made over the past decades concerning the
support of collaborative work in information systems in general and in content management
in particular which should also be made available within this context. Therefore, interfacing
content descriptions with existing information systems is highly desirable. These two classes
of system support can be broken down into more concrete tasks.

In dedicated systems, the typing of explanations can be utilized not only to increase the
odds of building meaningful explanations but can also be used as part of the explanation
itself. Similarly to Cassirer’s concepts, additional information can be given on the nature of
the described entity. Moreover, some work already exists in this area, system support can be
given for assigning such semantic types to descriptions. The suggestions of types by the system
can, for example, be based on the types of other nearby explanations.

In addition to dedicated systems, a transition path to existing information systems is highly
desirable. As information systems are usually based on a conceptual model, which does not
have to be fixed in all cases, this bridging can happen in two steps: Creating a conceptual model
as a basis for the information system and transforming descriptions at the instance level to be
imported into the information system. Despite semantic typing, prospectors should be able to
create descriptions in the form most appropriate to the task at hand. This means that semantic
typing should not have structural consequences for descriptions. Clearly, a transition to a
conceptual model is only viable if the descriptions are uniform enough to produce a coherent
conceptual model according to which instances can be transformed. It is thus necessary to
provide a process which guides the consolidation of the domain and the creation of a conceptual
model based on consolidated descriptions.



10 CHAPTER 1: INTRODUCTION

Figure 1.3: Structure of this thesis around Asset Expressions (AEs).

1.4 Approach to Solution and Overview

The objectives discussed above will be realized by three contributions:

1. A paradigm called Asset Expressions to describe entities medially and conceptually. The
language to create Asset Expressions uses a few simple-to-understand paradigms and is
easily transformed into a visual representation for the user.

2. Enhancements to Asset Expressions which facilitate the creation of semantic descriptions
and the collaboration between users.

3. Processes to work with these descriptions: A process to guide the mapping of description
networks onto information systems as well as a process that supports users in working
with the descriptions themselves.

Asset Expressions allow users to capture real-world entities by representing them medially as
well as providing a conceptual model that again uses medial representations in its explanations.
Networks of expressions can thus be created recursively.

Before Asset Expressions are introduced, chapter 2 sets the context for this thesis by re-
viewing related approaches, particularly in the fields of descriptions of entities as well as of
structuring and explaining multimedial content. Models of real-world entities have been built
for almost as long as computerized storage of data exists. Some steps of this history are traced
in section 2.1. Various applications treat multimedial content as more than just opaque data.
Some of their models for content handling are discussed in section 2.3. Asset Expressions reuse
bits or gain inspiration from these models.

After this overview, Asset Expressions are introduced in chapter 3. Around their plain
version (section 3.1), several layers of extensions are built. These layers are depicted in fig-
ure 1.3. Substructuring of content (section 3.2) greatly facilitates the creation of rich models
as substructure makes it possible to describe individual parts of the content. Such dedicated
descriptions allow the explanation of content by filling the gaps in the knowledge of the audi-
ence. Next, Asset Expressions are extended with a semantic type system in section 3.3. The
purpose of this type system is to inject some information about the application domain into
expressions that can be automatically enforced by a type checker.

Means for efficient use of larger numbers of Asset Expressions in collaborative environments
are provided in chapter 4. The semantic typing imposes no structural constraints on the typed
expressions. This provides users with great flexibility in modeling their expressions. However,
if over-done, structurally diverse expressions can hinder collaboration. Expression traits are



1.4 APPROACH TO SOLUTION AND OVERVIEW 11

introduced in section 4.1 to provide some coupling between semantic types and expression
structure. Traits can be thought of as templates, but their use is optional.

If users can share their expressions with others, this audience needs access paths that
exceed the pure navigation available in Asset Expressions themselves. To this end, section 4.2
introduces the Asset Expression Query Language (AEQL). There are two use cases for queries:
Retrieval of expressions that are interesting to a certain problem and selection of parts of
expressions to use in the construction of new expressions. Both cases are addressed by AEQL.

The creation of expressions based on digital multimedial content can best be supported
in a dedicated system, as discussed in chapter 5. This system deals with the creation and
manipulation of Asset Expressions in general, i.e., without regard to a particular application
domain.

The thorough description of application domains in Asset Expressions often leads to a
deep understanding of the domain. Regular structures emerge in related expressions. These
structures can be exploited to model the application domain in a conceptual model and to then
use this model to create an information system which is based on it. A class-based typing of
Asset Expressions is provided in chapter 6.

Chapter 7 presents type inference services for both type systems. Semantic types are
obtained by matching structural similarities of an expression against previously defined ones
in section 7.1. Next, structural types are inferred in section 7.2 from a larger set of expressions
to type expressions in the type system presented in section 6. A process is presented to this
end to create a conceptual model of the application domain. The process is novel in that it
focuses on the domain-expert to create the conceptual model and can usually be run without
the help of a modeling expert.

The insights that have lead to the development of Asset Expressions were obtained in
practical application projects. Chapter 8 presents one such project and describes how its
domain—archival documents from art history—can be modeled using the Asset Expression
approach.

This thesis concludes with chapter 9. After a summary of the approach, related work is
compared. This includes entity modeling as well as schema construction processes. The chapter
concludes with interesting future research objectives.



12 CHAPTER 1: INTRODUCTION



Chapter 2

Context of This Work

The presented work is related to several contributions either by building on them directly or
by carrying over some part of them. These contributions from data modeling, programming
languages, and multimedia documents are reviewed in this chapter. The account given of each
is not meant to be complete but is deliberately constricted to concepts that are important to
this thesis. Literature with more complete coverage is cited. Related work is compared to the
approach of this thesis in chapter 9.

2.1 Data Model Extensions

In this section topics on data modeling in a general sense are reviewed. Most contemporary
information systems contain a persistent data store. Two models for such stores are outlined
next: the relational model and the semi-structured model. Persistent data needs to be inter-
faced with programming languages to make use of it at the application level. Some approaches
to overcome the gaps between paradigms in both worlds are described afterwards.

It is beneficial to create a conceptual model of the application domain as a basis for an
information system (IS) in this domain. This model will then influence all parts of the system,
including the persistent storage. In particular, it is important that “the IS must model the
user’s conceptualization of the application domain, not the designer’s independent perception,
nor should it be a model of the way data is stored in the computer” [Bor85]. Therefore,
users should be able to modify the conceptual model according to their needs. This section
concludes with an account of the Conceptual Content Management approach that allows such
modifications.

2.1.1 Persistent Data

The relational model is useful for describing large amounts of regular data. It was first intro-
duced by Codd in 1970 [Cod70]. It is based on the notion of an n-ary relation. A relation is
the subset of the Cartesian product of the n domains found in the relation. The data in the
relation, also called its extent, is a set of n-tuples whose values are from the domains specified
in the relation. While tuples were originally defined as ordered [Cod70], named attributes in
tuples proved more convenient. In ordered tuples, each attribute has to be referred to by its
position. This position, however, is defined at the creation time of the relation and is usu-
ally rather arbitrary as there is no inherent semantic order of the attributes in most relations.
Named attributes offer the advantage of carrying a bit of meaning, which makes them easier
to remember. Not relying on an order also is beneficial in processing query results that might
contain re-ordered or even combined tuples.

13



14 CHAPTER 2: CONTEXT OF THIS WORK

Order(OrderID,Date)
OrderItem(ItemID,OrderID,Name,Quantity,Price)

(a) Two relations

Order
OrderID Date
1 01 Jan 1970
2 05 May 1971

OrderItem
ItemID OrderID Name Quantity Price
1 1 “Product A” 90 19.90
2 1 “Product B” 1 59.95
3 2 “Product C” 10 0.99
4 2 “Product D” 7 5.99

(b) Some sample data

πName,Quantity(OrderItem ⊲⊳OrderID=OrderID (πOrderID(σDate>30 Jun 1970 Order)))
(c) A query

Name Quantity
“Product C” 10
“Product D” 7

(d) The query result

Figure 2.1: Example data in the relational model with a query that joins both relations.

All data in a relation are values. This means that the identities of tuples as well as relation-
ships between tuples have to be realized using values. Tuple identity is obtained by introducing
a key attribute whose value is unique for each tuple in the relation. A common domain for key
values are natural numbers. With the help of these key values relationships between tuples
can be described by mentioning the identifying key value of the tuple that is referenced in
the tuple that contains the reference. This encodes a one-to-one or many-to-one relationship.
Other types of relationships can be implemented by additional relationship relations [Amb03].

Queries on relations can be expressed in relational algebra which is used as a formal model
of the operations of relational database systems [EN94, chapter 6]. The algebra contains several
operators including selection, projection, and join. Selection (σ) is used to obtain the subset of
the input set of tuples that fulfill a given selection criteria. Projection (π) obtains a subset—
specified by name—of the attributes of all tuples. Join (⊲⊳) combines tuples from two related
relations. The result of the join is the cross product of both relations filtered by the join
condition. The results of all operators are again relations. An example is given in figure 2.1.

A widely accepted visualization of relations are tables. For each relation there is one table
which is composed of rows and columns such that each row corresponds to a tuple and each
column to an attribute of the relation. Tables are also used by the Structured Query Language
(SQL, [BS82], most current version [EMK+04, Sta03]). SQL is a declarative language whose
query results are based on joins of tables. In analogy to the relational algebra, joins combine
tables based on values. The results of joins can be projected to retrieve only the desired column
and selection criteria can be given to limit the rows taking part in the join. It is an important
property of SQL that all query results are again tables allowing for composition of queries.

The declarative nature of SQL makes it possible for implementations to retrieve the result
in the way most efficient for the given dataset and on that particular implementation. This
enables a wide range of optimizations. Users of SQL also benefit: They do not have to determine
the most efficient access path that leads to the desired result.

While SQL contains means to account for schema evolution by modifications on tables,
the corresponding data transformation must be carried out manually. In practice this limits
possible evolution steps because it is generally difficult and sometimes impossible to ensure



2.1 DATA MODEL EXTENSIONS 15

access to data according to past schemata. Therefore, most applications assume that the
schema is defined at the beginning of the application’s lifecycle and remains relatively constant
afterwards. The creator of a table can also specify data integrity constraints that must hold
on the table. These constraints are enforced on all user transactions such that a transaction
that would cause the violation of a constraint will fail.

Semi-structured data [Bun97] are data that are not uniform enough to be fully described by a
schema but do exhibit some structure. In semi-structured data there is usually structure on a
micro scale, e.g., between a few elements of the same document. Abstractly, semi-structured
data is represented as a graph of nodes and labeled edges. The graph is usually assumed to
be a tree, even though some extensions allow cycles. If cycles are present, there often is a
preferred dimension that constitutes a tree.

The reasons for interest in semi-structure data are manifold. Some data are genuinely
unstructured. The world-wide-web is an example of this because it contains resources that
follow no predefined model and put all sorts of resources into relationships. Another important
motivation is that of data integration. This occurs for example when system boundaries have
to be bridged and there is no single schema that subsumes the schemata of both systems.
Considering the general case of exchanging data between two arbitrary systems, it is apparent
that no global schema will be available that subsumes all of them. Data can then be represented
as semi-structured data to overcome this lack of conceptualization. The re-interpretation of
data according to new—possibly ad-hoc—schemata also is an interesting application. This, e.g.,
occurs in queries that search for some string of text regardless of the attribute it is contained
in (or even including the attribute names themselves).

Data that is hierarchical in nature can easily be represented in semi-structured form. If
the same domain offers several possible hierarchizations, one has to be chosen as the dominant
one according to which data will be organized. The employees of a business can for example
be organized either by physical address or by organizational structure. Whichever hierarchy is
manifest in the data will usually receive benefits in querying and manipulation.

A format for semi-structured data that has recently become very popular are languages from
the Extensible Markup Language (XML) family. XML offers a data model that is a bit richer
than the plain semi-structured graph model by introducing several types of nodes. Some of
these nodes can contain primitive values. However, ultimately the model can be mapped onto
the plain tree by creating additional nodes and labeling the edges to them with the primitive
values. XML is interesting as its applications include all of the motivations for semi-structured
data given above: unstructured data (on the world-wide-web in the form of XHTML), data
migration (the field of web-services has recently drawn much interest, but many data integration
projects based on XML have existed before), and browsing of documents. XML is popular as
a storage format for data that is inherently tree-structured.

The existence of semi -structured data raises the question of what particular structure
can be found in the data. Several means to express such structure exist. An early one are
DataGuides [GW97] that collect all sequences of edges found in the data in a single graph.
DataGuides can be used to infer a schema that matches the semi-structured data [GW97,
GGR+00]. Another language to specify this structure is XML Schema [FW04]. While it seems
to be contradictory to specify a schema for semi-structured data, it is important in many ap-
plications, e.g., in data integration to determine the exact language that is to be used in an
exchange. Schema languages for semi-structured data provide means to specify which parts of
the data can be free-form and which have to be rigid.

2.1.2 Persistency in Programming Languages

Persistent data stores offer facilities to store, load, and query for data. The languages used for
declaration of data structure as well as those used in query and manipulation are specialized
to the task. They are, however, usually not algorithmically complete. This makes it necessary



16 CHAPTER 2: CONTEXT OF THIS WORK

from OrderDB import OrderRel;
transaction OrderExpensive(var O: OrderRelType);
begin

if all o in O (o.price > 100) then
OrderRel:+ O

end
end OrderExpensive;

Figure 2.2: DBPL example allowing only expensive orders with a price over 100. The
example uses relation types (OrderRelType) and quantified expressions in a user trans-
action

to interface with the data store from algorithmically complete programming languages that
are used to develop the application which processes the data. Data stores use declarative,
set-oriented languages while programming languages are element-based, procedural languages.
This difference in paradigms is referred to as the impedance mismatch. Database programming
languages have three major contributions [Mat93]:

1. Persistency abstraction. Transient and persistent objects are treated alike, there are no
separate languages for the manipulation of persistent data and transient algorithms but
one integrated language. Therefore, there also is no explicit interface to a persistency ser-
vice in which application programmers would need to cope with the impedance mismatch
on their own.

2. Type completeness. Mass data—as it occurs in the persistent data store—can be handled
by the type system of the language through bulk data types.

3. Iteration abstraction. Algorithms for mass data often have iterative qualities which are
accommodated by database programming languages through quantified predicates or set-
valued expressions.

Integrations of programming languages with data definition and manipulation languages in
database programming remedy the impedance mismatch. Realizations of such an integration
can be classified in three categories [Mat93]:

1. Type-oriented database programming languages are extensions of existing pro-
gramming languages that are based on a procedural kernel.

One approach to integrating persistency is augmentation of this kernel with relational
types and set-valued operators to treat persistent data [Sch77]. Which data is made
persistent is declared by these types. The important concept of database transactions is
also present in these languages. Benefits are the integration of facilities to model data
and to manipulate it, overcoming the impedance mismatch. An example of this approach
is the Database Programming Language DBPL [MS91]. A transaction in this language
is shown in figure 2.2.

Another approach is taken in what is called persistent programming languages. A central
aspect for the integration of persistency into these languages is the persistent heap. Any
object can be stored persistently by placing it on the persistent heap. The scope of
persistence is defined by a special object called the root of persistence. Any object
reachable from the root of persistence is placed in persistent storage—either by static
scoping rules or by dynamic binding.

2. Logic-based and functional database languages. Logic-based languages achieve
persistency by making facts and rules persistent. The model is purely declarative, which



2.1 DATA MODEL EXTENSIONS 17

[ (Name o) |
o ← Order; i ← OrderItem;
OrderID o = OrderID i; Date o > 30 Jun 1970 ]

Figure 2.3: The query from figure 2.1(c) expressed as a list comprehension.

gives many opportunities for optimizations. This comes, however, at the price of sacrific-
ing algorithmic completeness. More sophisticated application systems therefore usually
require an interface with an algorithmically complete language in order to implement
higher-level data manipulations. This carries the danger of introducing a new impedance
mismatch [Man91].

The use of functional languages for database programming is appealing because of their
closeness to relational algebra. Figure 2.3 shows an example of a query expressed as a
list comprehension [ART90]. List comprehensions can be transformed into λ-expressions
on which optimizations can be executed.

3. Object-oriented systems persist objects which are at the same time the entities of
transient programming. In this type-completeness they are similar to database program-
ming languages. However, persistency is embedded into the object-oriented paradigm.
Data access is often achieved via a combination of quantified, set-valued expressions and
path navigation through object trees. An example of this is the Object Query Language
(OQL, [Cat94]) which is by itself only a query language, but can be integrated with
programming languages to avoid an impedance mismatch [Sub96]. The result of this par-
ticular integration is an object-oriented database programming language which is based
on relations and in many aspects similar to DBPL.

The LINQ framework integrates query facilities into the language C# [MBB06]. Data that
can be queried include objects in the host language, as well as relational and XML data.

Despite the availability of solutions which provide tight integration of data store and pro-
gramming language and thereby avoid an impedance mismatch, many contemporary informa-
tion systems are content with keeping data store and application code separate. While this
approach has the disadvantages discussed above, there are some reasons for its practicability.
The first is the almost orthogonal combinability of data store and application of the program-
ming language of choice. An integrated language will not offer persistency integration for all
types of data stores or even their particular implementations. Large systems might contain
several data stores at once that function according to different data models. Another reason is
the availability of code generators which relieve the programmer of the burden of writing repet-
itive code that overcomes the impedance mismatch. Also, technologies have emerged that add
persistency to purely transient languages either declaratively (for example Hiberate [Ell04]) or
by naming convention (for example Ruby on Rails [Cas05]). While still exposing the program-
mer to an impedance mismatch especially because queries have to be formulated in a different
language, practical experience suggests that the integration of data store and programming
environment achieved by these languages is smooth enough to be useful.

2.1.3 Assets: Dualistic Description of Entities

The philosopher Ernst Cassirer notes [Cas01] that the pair of content and conceptualized entity
go hand-in-hand and neither makes sense in isolation, see section 1.1. Such dualistic descrip-
tions of real-world entities are provided by Assets. An Asset describes entities through a medial
view as well as a conceptual model view. Both views are specified in Asset classes. The medial
view can—as the name suggests—be any medial content. This content serves to the human
viewer as a representation of the entity. In the model view the entity is described conceptually.



18 CHAPTER 2: CONTEXT OF THIS WORK

Following semiotics [Pei31], this description is provided by characteristics, relationships, and
constraints, also see section 1.1. A set of Asset classes describing an application domain is
combined into an Asset model.

Asset classes and models are defined by means of the Asset Definition Language (ADL).
Consider the following example of its syntax:

model PoliticalIconography
...
class RegentImage {

content image : Image
concept characteristic title : String

characteristic epoch : Epoch
relationship regent : Regent
relationship artist : Artist
constraint epoch = artist.epoch

}
...

The code fragment defines a model PoliticalIconography, which includes a class named
RegentImage. This class provides in its content compartment a reproduction of the mod-
eled image. In the concept compartment two characteristic attributes are given. The types
of these attributes are taken from a base language, thus the available types and the facilities for
creating new ones depend on this language. Assets of the class RegentImage can be related
to other Assets of types Regent and Artist through the regent and artist relationships
respectively. The constraint forces the epoch of any related artist to match that of the
painting.

To enable reuse of Asset classes, existing definitions can be imported when defining a new
model. These can then, e.g., be used as base classes to new Asset classes:

model RenaissancePoliticalIconography
from PoliticalIconography import RegentImage
class RenaissanceRegentImage refines RegentImage { ...}

In addition to the ADL there exist languages for modification and query of Assets as
well [Seh04].

2.1.4 Conceptual Content Management

Conceptual Content Management (CCM) uses Assets to provide descriptions of real-world
entities through pairs of medial content and conceptual abstractions as requested by Cassirer. A
detailed account of the approach can be found in [Seh04]. CCM provides a conceptual model of
the domain in order to generate an application system from it. CCM overlaps with traditional
content management [Tri05] in also separating the description of entities (in documents in
content management) from their presentation. Dualistic descriptions, however, are not found
in traditional content management. CCM has been applied to a variety of topics [SSW01,
SBS05, BSSS05, BSS05].

Most contemporary software engineering processes encompass an analysis of the application
domain at some point. Based on the results of this analysis—which are often expressed in a
conceptual model—an information system can be built which supports various tasks found in
the application at hand. However, the underlying assumption that the whole system can be
based on one single conceptual model is not always true. Moreover, it is usually also assumed
that the conceptual model does not change.

It can be observed in many application domains that users of an information system hold
heterogenous views on the domain. These views can differ in a variety of ways. Users can be
interested in a more detailed model in some specific area that is of particular interest to them.



2.1 DATA MODEL EXTENSIONS 19

This area may of course be different for any two users. Also, users can disagree on what should
be included in the application domain, i.e., what is of interest in general to the application
at hand. One user’s primary interest might be another user’s related work. In a direct clash,
users can hold different opinions of what is an appropriate model of the application domain.
If communication is possible at all between such users, these differences are likely to rather be
in the details than in the broad picture.

The Asset definition language allows users to express their personal opinions in the concep-
tual model. They can personalize existing definitions based on the common model:

model MyPoliticalIconography
from PoliticalIconography import RegentImage
class RegentImage {

content description: MP3File
}

This adds a content to the model MyPoliticalIconography which is personal to the
user. Any attributes of RegentImage which are not mentioned remain the same as in the
original. Users are not limited to adding attributes or classes but can also modify all other
aspects such as types or cardinalities of relationships [Seh04].

This ability of users to modify the conceptual model is referred to as open modeling. Not
only can the conceptual model be changed at all, but users (or groups of users) are able to do
so on a personal basis. This can potentionally result in several parallel models. Traditional
information systems technology is neither able to cope with several models at a time, nor can it
react on its own to user changes to the model. The latter is necessary to make open modeling
practical by automatic adjustment of the system to the new specification.

Several other approaches towards personalizable systems exist, e.g., [Sch99, Rie00, RSG01].
However, these approaches realize personalization at runtime through generic implementations.
Users are therefore not able to express their view of the application domain in a personal
conceptual model.

When several users of the system can all model their own personal opinion in a conceptual
model, it is unrealistic to assume that each of these models can be manually implemented by an
application developer. Moreover, changes to models might be frequent, but open modeling is
only feasible for users if the new system (implementing their new model) is available to them in a
timely manner. Both arguments rule out the traditional approach of manual implementation.
Instead Conceptual Content Management Systems (CCMSs) must be able to adapt to new
models on their own and in close to real time. This ability of systems is referred to as system
dynamics. System dynamics and model openess go hand-in-hand.

System dynamics can be achieved by means of a compiler framework and a modularized
architecture. The compiler framework uses the Asset model to create a full CCMS which
conforms to this model. The CCMS is composed of components which in turn are broken
down into modules. The compiler framework uses several generators each of which creates a
particular module. A particular system is created by a run of the compiler framework with
an appropriate configuration of generators. Details on the compiler framework can be found
in [SBS06].

Modules are self-contained units which form the smallest building block of a CCMS. There
are different kinds of modules. Central to the notion of a module is the uniform module
interface which is used for communication between modules. This interface provides means
to create, modify, and delete Assets as well as to query for existing ones. All operations are
available in different forms, e.g., to also deal with sets of Assets.

The operations of the module interface are common to all kinds of modules, even across
components. All modules of a component deal with Assets of a fixed model (according to
the domain of the component) through this common interface. Modules therefore are freely
combinable while still being domain specific (as only Assets from the model of the component



20 CHAPTER 2: CONTEXT OF THIS WORK

Figure 2.4: Module setup for personalization. Additional provenance information is intro-
duced to track personalized variants of public Assets.

are available through this interface). Their combination is realized in layers where modules
from higher layers use one or several modules on the layer below. The dependencies of modules
form a directed, acyclic graph. The most important types of modules are discussed below.

Client Modules. Client modules provide the uniform module interface to modules on higher
layers. Client modules do not use any further modules but map all calls they receive onto some
third party systems. The most common case of third party system is a database used to store
Asset instances.

Other client modules might forward calls to a remote system that uses a communication
mechanism different from the module interface. Such remote systems can be outside the CCMS
entirely, for example a system accessible via a web service.

Server Modules. Server modules are complementary to client modules. They use modules
on the layer below them via the standard module interface but do not provide this interface at
all. Instead, they usually provide some other interface, but options for this interface are very
diverse. They include interfaces for human users to the CCMS—for example a web application
or a fat client—or the remote side of a standardized distribution mechanism (such as a web
service or CORBA1).

Transformation Modules. Transformation modules both use and provide the standard
module interface. They are based on exactly one module on the layer below them. There are
three types of transformations:

1. Temporal Transformation modules make use of a client module to make Asset instances
long-lived. This is the persistence mechanism of CCMSs.

2. Spatial Transformation modules are used to achieve physical distribution between sys-
tems. Spatial transformation modules are logical modules as they are part of two different
systems at the same time. To this end they are composed of two modules: a client and
a server module, which use some distribution mechanism between them.

3. Schema Transformation modules use and provide the standard module interface. How-
ever, in the case of schema transformation modules both interfaces conform to different
schemata.



2.2 FOUNDATIONS 21

Mediation Modules. To provide access to different information sources in a homogeneous
way, mediators can be used [Wie92]. Mediators themselves include a wrapper around the
information sources as well as some mediation logic to tie them together. This mediation
logic is implemented by mediation modules, the wrapper by transformation modules. Types
of mediation modules differ in their mapping of module operations to their base modules:

• Schema variant mediation modules are based on two underlying modules and used in
cases where there is a different schema on one of the base modules. Instances are read
from both base modules, creation and modification are done in the module for the new
schema, and deletion happens in both modules. A component implementing this scenario
is shown in figure 2.4.

• Instance personalization modules combine a module with publicly available Assets and a
module with Assets personal to the user of the module. The user can modify instances
according to personal opinion without interfering with the instances defined in the public
module. This mediation module is based on a public (for access to the data of the
system) and a personal module (for the user’s modifications). Instances are read from
both modules with personalized variants hiding public instances, creation is done in the
personal modules, modification is done on a personal copy of the public instance, and
deletions are recorded in the personal module.

• Hub modules multiplex calls to their interface to a number of underlying modules. All
base modules have the same role.

Complete Conceptual Content Management Systems are a setup of a large number of mod-
ules. A great variety of functionalities can be realized by module combination. Figure 8.6
shows a real-world system which exhibits several ways of module combination.

2.2 Foundations

2.2.1 Functional Programming

In mathematics, a given variable usually refers to the same value throughout a calculation.
Otherwise it would make little sense to talk about the solution of an equation such as x2 +1 =
2x. In programming, this is not always the case. In a procedural language, such as Pascal, one
can write assignments, e.g.:

x = x + 1;

It is understood that both occurrences of x refer to different values. In a mathematical
context, one would distinguish both occurrences by different names. More precisely, when
seeking the solutions to an equation

∃x, x2 + 1 = 2x

the variable x is said to be bound to some—possibly not yet known—value as opposed to
a free variable.

The λ-calculus offers a possibility to make explicit which variables are bound and what the
scope of their binding is in a functional program. It uses a special binding symbol “λ” that
identifies bound variables occurring in an expression:

λx.x + 1

1CORBA: Common Object Request Broker Architecture [OMG96]



22 CHAPTER 2: CONTEXT OF THIS WORK

The λ-calculus is a simple, yet well-understood paradigm to express functional programs.
In its purest form, it only contains three concepts: variables, abstractions of variables from
expressions, and applications to expressions. However, constants are usually also introduced
for brevity. The syntax is [Rev88]:

expression ::= variable | constant | application | abstraction
application ::= (expression) expression
abstraction ::= λvariable.expression

Variables are names, usually single characters. Constants are literal values of the domain
of allowed constants. The variable in abstractions is called abstraction variable. The first
expression in an application is its operator, the second its operand. Thus some examples of
valid expressions are:

λx.x (x)y (λx.x)y λx.3

Many authors also include some standard operations. Both constants and operations can
be expressed in the pure version. The extensions are therefore only syntactic sugar to improve
readability of common expressions:

λx.λy.((+)x)y ((λx.λy.((∗)x)y)3)4

The first expression is a function that will perform an addition, the second an instance of
multiplication that would equal 12 if executed.

When combining expressions, one sometimes needs to avoid clashes in naming. This can be
achieved by renaming the clashing variables. The renaming of a variable x to z in an expression
E is written as

{z/x}E

The resulting expression can be obtained by recursing on the structure of E and renaming
all encountered variables x and abstractions λx to z and λz, respectively. For a formal definition
see [Rev88, chapter 2.2].

The substitution of an expression Q for all free occurrences of the variable x in P , i.e.,
[Q/x]P can then be defined inductively as follows [Rev88]:

1. [Q/x]x =̃ Q

2. [Q/x]y =̃ y, if x 6= y

3. [Q/x]λx.E =̃ λx.E

4. [Q/x]λy.E =̃ λy.[Q/x]E, if x 6= y and (x not free in E or y not free in Q)

5. [Q/x]λy.E =̃ λz.[Q/x]{z/y}E, for any E and for any z such that x 6= y 6= z and z does
not occur in (E)Q, if x 6= y and (x free in E or y free in Q)

6. [Q/x]E)F =̃ ([Q/x]E)[Q/x]F

Rule 5 is essentially the same as rule 4, but it avoids the capture of the y that occurs in Q
by renaming it to z. Using this substitution, the β-rule defines simplification of expressions:

(λx.E)F → [E/x]F

Based on the β-rule, reduction of expressions can be defined, which makes it possible to
express calculations. Reduction can occur when a parameter is applied to an expression in
which a variable is bound by abstraction. Thus, the value of the multiplication in the example
above can be obtained as:



2.2 FOUNDATIONS 23

Abstraction

Γ, x : τ ⊢ E : σ

λx : τ.E : τ → σ (2.1a)

Application
Γ ⊢ E : σ → τ Γ ⊢ F : σ

Γ ⊢ (E)F : τ (2.1b)

Variable
x : τ ∈ Γ
Γ ⊢ x : τ (2.1c)

Figure 2.5: Typing rules of the simply typed λ-calculus. Γ is the typing context which holds
a sequence of variables and their types.

((λx.λy.((∗)x)y)3)4 = (λy.((∗)4)y)3 = ((∗)4)3 = 12

The last step requires the expansion of the syntactic sugar for multiplication and constants.
Expressions in the λ-calculus can be typed with what is called a simple typing [Pie02]. The

idea is to assign each variable a type. The type of an abstraction is then a function type whose
domain is the type of the abstracted variable and whose range is the type of the expression
that is abstracted from. Applications are only well-typed if the types of the operand and the
operator match. Intuitively, this means that the operand must be a proper argument to the
operator.

There are some primitive types to accommodate the built-in constants, such as int and bool.
Function types are obtained by the type constructor →. A function of type σ → τ therefore
has domain σ and range τ . The type of an expression is separated from the expression by a
colon.

The function that always adds 2 to its argument

λx : int.((+)x)2

is of type int→int. The type assigned to an abstraction variable might be redundant as it is
sometimes possible to infer types from the expression. In the function above for example, x
must be of type int as the function + is of type int→int. This allows for typechecking against
the specified types. The expression

(λx : int.((+)x)2)10

is of type int. Any applied operand that is not of type int would make the expression ill-typed:

(λx : int.((+)x)2)true ; type error!

Figure 2.5 summarizes the typing rules (a summary of the syntax of type inferences is given in
section 3.3.4 on page 63 for readers who are unfamiliar with it). The typing context Γ holds a
set of variables and their types. The comma operator (used in the typing rule for abstraction)
appends a type assignment to the context. Only applications whose operator contains an
appropriate abstraction are well-typed as expressed in rule 2.1b. A variable is of type τ if it is
defined as such in the typing context.

2.2.2 Denotational Semantics

The meaning of programming languages can be defined by denotational semantics [Sto77,
All87]. Semantic valuation functions map syntactic constructs in the program to values, for
example numbers or booleans. The semantics of a whole program can be obtained through
the recursive definition of the semantic valuation function. This function is defined in such



24 CHAPTER 2: CONTEXT OF THIS WORK

a way that the value of a larger syntactic construct is defined in terms of the values of its
sub-constructs. This division must eventually arrive at atomic units that have no further
subdivision if the semantics of the whole are to be obtained.

Binary numerals num are usually written with an alphabet of {0, 1} and have the syntax

ν ::= νδ|δ
δ ::= 0|1

The semantics of binary numerals, that is the integers int they stand for, can be expressed
by a semantic valuation function V:num→int

V[[0]] = 0

V[[1]] = 1

V[[νδ]] = 2× V[[ν]] + V[[δ]]

Of course, digits in typewriter font 0, 1 represent semantic objects, but writing down the
valuation function makes it necessary to adopt some syntax for semantic objects. The first
two lines define the semantics of atomic syntactical objects that are not reduced further. The
third line serves to decompose a complex construct into two simpler terms by separating the
last digit from the numeral.

In a similar manner as the above example, denotational semantics can be given for more
complex languages than numerals. The approach is always the same: Subdivision of large
constructs into smaller ones until atomic expressions are reached that can be directly translated.
To humans the appeal of semantics defined denotationally depends on the intuitiveness of the
translations of the atomic syntactical elements and on the approach taken to decomposition of
complex elements.

2.2.3 Ontologies

Ontologies have become a popular research topic in several fields because they aim to solve
a rather common problem: Ontologies provide a common understanding of an application
domain. They are used to formalize this understanding in order to distribute it among all
concerned partners. Despite their popularity, there is some disagreement as to what exactly
an ontology is and how it should be specified [NH97, PGC02]. A definition that is general
enough to be shared by most contributors to the field is the frequently cited ontology as “a
formal, specific conceptualization of a domain” [Gru93]. The term “ontology” is borrowed
from philosophy where it refers to the study of the nature of being. In this sense it is usually
spelled with a capital “O” to distinguish it from its use as a system of categories. Ontologies
are used for a variety of purposes and in several different meanings [May02]: as schemata or
as meta-models, to explicitly define the meaning of vocabularies used in natural language, as
a “core body of knowledge” to be used as a basis for further developments, as well as their
original philosophical sense.

Ontology Definition

It is generally agreed that an ontology captures the conceptual structure of a domain [MS01].
In a simple form it can be given as a number of terms (the lexical references) which are then
associated with entities from the domain of discourse. Many ontologies also provide classes
which capture the conceptual structures of the application domain. These classes are defined
intensionally by attributes characteristic to them, which separate them from other classes.

McGuinness [McG03] lists possible candidates for ontologies shown in the ontology spectrum
in figure 2.6, beginning with the very simple notion of a controlled vocabulary. More complex
notions are thesauri—e.g., WordNet [Fel98]—or systems with an informal “is-a” relation. Other
authors also consider database schemata a form of ontology [KS03]. McGuinness considers



2.2 FOUNDATIONS 25

Figure 2.6: Spectrum of ontologies after [McG03]. The dashed line marks least expressiveness
for a paradigm to be commonly considered an ontology, though this border is no a general
consensus.

all paradigms in the spectrum that have at least a formal “is-a” relation to be ontologies.
More expressiveness is gained by extension of the formalism with structural classes, different
kinds of constraints, and more complex notions such as disjointness or inverses. Conceptual
modeling approaches such as CCM (section 2.1.4) have an expressiveness that is approximately
found between “Value restrictions” and “General logical constraints”. The dimensions “model
acceptance” and “model scope” can be added to that of “expressiveness” to classify ontological
models and their particular implementations [SGW05].

While ontologies share some properties with database schemata—such as the structural
definition of classes—there are important differences. An ontology is used for collaboration and
must therefore be a shared understanding. Furthermore, an ontology provides a description
of a domain, not an implementational view of a particular part of this domain in a computer
system. Conceptual schemata [BMS84] are more similar to ontologies as they also aim at
describing the domain, not the implementation.

Many applications of ontologies use a paradigm in which the definitions in the ontology
have structural influence on the descriptions of instances in the application domain. These
paradigms mostly differ in the formalism used to express the ontology. The following definition
is proposed by Maedche [MS01]: An ontology is a quadruple

O = {C,R,HC , AO}

including a set of concepts C, a set of binary relations R ⊆ C × C of concepts, a concept
hierarchy HC ⊆ C × C, and a set of axioms on the ontology called AO. This ontology is
populated with concepts and relations between them. However, it still is difficult to talk about
elements of this ontology as there are no names for concepts nor relations. To remedy this, a
lexicon is introduced. The lexicon provides names of concepts and relations. It also contains
translations of those names to concepts and relationships.

Ontology Creation and Evolution

The extent to which a domain is modeled depends on the preferences of the ontology designer.
Five design criteria have been suggested for ontologies [Gru93]:

• Clarity: The ontology should clearly communicate the intended meaning of its concepts.
To this end it is important to be objective in the definitions even if the reason for in-
cluding the concept might have been subjective. Formalization is mentioned as a means
towards achieving objectivity. In addition to formal definitions, natural language defini-
tions should also be provided for all concepts.



26 CHAPTER 2: CONTEXT OF THIS WORK

Figure 2.7: The On-To-Knowledge meta-process [SSSS01].

• Coherence: The ontology should be consistent. This should also cover the concepts which
are defined informally.

• Extendibility: The ontology should provide the foundations for anticipated tasks. It
should be possible to later define new concepts based on the existing ones.

• Minimal coding bias: Representation choices should not be made for convenience of
expression with a certain formalism.

• Minimal ontological commitment: The intended knowledge sharing should be made pos-
sible with as few ontological claims as possible. In particular, only those terms that are
necessary for the communication should be defined.

These design criteria overlap with quality measures for conceptual models [CACW02]. Es-
pecially the first three criteria of clarity, coherence, and extendibility are also discussed with
respect to conceptual models [Wed00]. However, in any ontology—just as in a conceptual
model—there will always be a certain measure of subjectivity. [Mus98] notes about ontologies:

“They do not, and cannot, capture absolute Platonic truths about what might
exist in the world. The merits of a particular ontology can be measured only in
terms of how well that ontology supports development of the application programs
for which it was designed, and of how easy it is for developers to reuse that ontology
to build new applications.”

In practical projects ontologies are sometimes simple taxonomies [SSS04] or are used as
conceptual models [SMJ02]. Taxonomies provide “is-a” relationships between their concepts,
which is a notion whose formality can still be coped with by some domain experts [GW02,
SSS04].

Regardless of the level of formality that the ontology is expressed with, the creation of the
ontology is usually carried out by an expert who does not only have an understanding of the
application domain but is also familiar with the modeling concepts. If ontologies are used in
the development of information systems, some process support for their creation as well as the
integration of such a process with the overall application development is necessary [Gua98].

Figure 2.7 shows the On-To-Knowledge meta-process [SSSS01], which can be used to sys-
tematize the creation of ontologies. It is part of a process for the development of knowledge
management applications (CommonKADS, [SAA99]). The On-To-Knowledge process consists
of five phases: (1) Feasibility study, (2) ontology kickoff, (3) ontology refinement, (4) evalua-
tion, and (5) maintenance. It contains two iterative elements: It is possible to revert to the
ontology refinement phase from both the evaluation as well as the maintenance phase. The
first iteration accounts for any errors that might have been made in the development of the
ontology, the second takes care of changes to the ontology that are necessary throughout the
lifetime of the project. During ontology kickoff the requirements to the ontology are specified,



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 27

and input sources (such as reuseable ontologies, domain experts, use cases, etc.) are identified.
A semi-formal ontology is created. The refinement phase is for concept elicitation with domain
experts and the formalization of these concepts into a fully formal ontology. The evaluation
phase checks the requirements to the ontology and tests the ontology in its target environment
that is build in the overall application development. The ontology is applied to the knowledge
management system in the maintenance phase.

A process that is specifically aimed at the evolution of ontologies to cope with changed
requirements is presented in [SMMS02]. A central goal of this process is to ensure that consis-
tency is maintained across changes to the ontology. Furthermore, the user is assisted by making
modifications of ontologies easy to carry out and by offering advice on further ontological re-
finement. This is achieved in four stages, which formalize the whole process from the request
of an ontology change all the way to the propagation of the change (and its consequences) to
dependent ontologies and applications.

Ontology Applications

Once defined, an ontology can be used in many ways. An overview is provided in [McG03],
including:

• Consistency checking : Ontologies can be used to assess the consistency of information
provided by the users or other sources outside the system. The constraints defined in the
ontology facilitate the early detection of errors in such information. Common examples
include value restrictions and type information. Similar functionality can be realized
by constraints in conceptual models. The difference between the two with regard to
consistency checking is mainly in the point of view: The ontology is not used as a direct
foundation of the information system and thus does not take the system’s point of view.

• Interoperability support : Even with simple ontologies such as taxonomies or controlled
vocabularies, there are benefits for interoperability since all involved parties can use a
common set of terms to communicate. More expressive ontologies can even specify the
entire language of communication by giving structural definitions for the terms in the
form of classes. This use of ontologies is often found in information integration tasks,
e.g., of XML documents [ES00]. A survey of mapping approaches through ontologies is
provided in [KS03].

• Supporting structured, comparative, and customized search: The effectiveness of queries
largely depends on the user knowing what to ask for. Ontologies can help in two ways:
By providing terms from the application domain along with synonyms, antonyms, etc.
and by offering properties of those terms (if the ontology is expressive enough) by which
the user can further refine the search.

• Exploiting generalization/specialization information: A too general query might result in
a large number of answers. This number can be reduced if the terms in the query can be
refined by means of the ontology. A search engine that can discover concepts from the
ontology that correspond to the query terms can even suggest useful refinements of the
query that lead to a managable number of answers. Whole retrieval models can be based
on ontologies [VFC05].

2.3 Semantic Models for Multimedial Content

In the following, an overview of paradigms for the handling of multimedia documents is given.
It is broken up into three parts: Paradigms that structure individual documents, hypermedia
systems that focus on the relations between documents, and approaches that also provide
semantic descriptions of multimedia documents.



28 CHAPTER 2: CONTEXT OF THIS WORK

(a)

(b)

Figure 2.8: A document marked up for typesetting to convey information which the typewriter
cannot produce directly (top) and the document rendered according to the information provided
in the markup (bottom). This constitutes specific markup.

2.3.1 Structured Documents

Two ways to structure documents are discussed below: markup and annotations. This discus-
sion is by no means exhaustive, not in the depth of the topics but especially not with regard to
discussing all approaches. There are for example also paradigms such as superimposed informa-
tion [DM99] (consolidating information from several sources), which are similar to markup and
to annotations. However, a detailed account of them is not necessary for the later discussion
of the Asset Expression approach.

Markup

Enriching documents with markup has been common practice in many fields, long before
digitized documents were available as a basis. Markup is additional information which is
added to a document for example to make its structure explicit or to describe its formatting.
Markup is generally added directly into the text. In the words of [Wat02] “document markup
is the process of adding codes to a document to identify the structure of a document or the
format in which it is to appear.” Heavy use of markup occurs with people who work with texts
professionally: authors, copy editors, and typesetters. Figure 2.8 shows an example of such
markup, which describes the exact formatting of a text in a document written on a typewriter.
As the typewriter cannot produce the desired formatting directly, particular codes to add this
formatting information are inserted into the text. The formatting of web pages is specified in
a similar way today.



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 29

Just as in the paper-and-pencil case, storing text with markup is what most electronic word
processing tools do. The actual text of a document is enriched by special codes which store
the formatting of the text. In text processing tools the markup is usually hidden from the user
who is presented a rendered view of the effect of the markup. As such markup is internal to
the word processor, it is called specific markup in [Wat02] (or procedural markup in [CRD87]).
Specific markup contains precise instructions to its audience (e.g., the word processing tool
which created it) but is generally difficult or impossible to understand for other audiences
(e.g., humans2). Contrary to specific markup, generic markup describes the structure of a
document. Generic markup is sometimes also referred to as descriptive markup [CRD87] as it
tries to describe the role of a part in the document instead of presenting instructions on what
to do with this part.

While specific markup might mark the headline of an article as “bold, centered, 18pt”,
generic markup might simply mark it as “heading-1”. The information on how to render
the document is stored separately in the case of generic markup. Instead of providing a style
directly, generic markup builds a document from a set of logical components, which are assumed
to be formatted consistently. A word processor can for instance be instructed to format parts
marked up as “heading-1” in “bold, centered, 18pt”, but the generic markup makes sense to a
wider audience than just this specific word processor. The processing system Latex [Lam86],
which was used to format this text, largely constitutes an example of generic markup: Text is
structured explicitly, but the formatting of these structures is left to a document style sheet.

With many communities interested in text markup, the adoption of a standard format
became important to facilitate dealing with marked up data, for example in exchanging it
between tools. This lead to the creation of the Standard General Markup Language (SGML,
see [Org86]) in 1985. SGML is aimed at all document authors who can use whatever markup
they desire. Such high flexibility was deemed crucial by the creators of SGML as it allows
users to invent new markup for particular application domains or to ensure that the markup
can be done in the native language of the participants [Gol90]. SGML is therefore not one
particular language, but rather a family of languages. For an application domain, a member
of this family is defined and used in instance documents. SGML thus combines broad coverage
of domains with high flexibility. Some feel that this makes SGML cumbersome and difficult to
learn [Pri96]. As a successor of SGML, one of the goals of XML [BPSM+06] was to somewhat
remedy this situation by specifying a family of languages which is easier to parse and process
and includes better internationalization. However, human readability is still not achieved,
which is witnessed by very few applications outside the domain of programming that use XML
directly as an interface to the user. Both SGML and XML partially standardize the syntax of
markup to facilitate processing. Means to explicitly connect the markup to its semantics still
need to be provided and a standard is missing in this area [RDSM02, RDSMH03].

Markup—both generic and specialized—is not haphazardly inserted into text but used
to convey or amplify some meaning. Depending on whether the markup is inserted by the
original author or is a result of a later interpretation of the text, markup can be classified into
constitutive or interpretative, respectively [SMHR03]. While the former expresses the author’s
intentions, the latter is the opinion of a third person. It is plausible to imagine disputes
about the correct interpretative markup, especially in absence of constitutive markup. [Sim94]
uses different visual models (renderings of marked-up text) over the same “conceptual model”
(marked-up text) to settle such disputes. One application is to build consensus via two such
views between researchers with different areas of interest. [SMHR03] create a formal model
of markup as nodes of a document tree. This model aims at making inferences about the
document based on the markup. The authors point out that while they make their arguments
with regard to marked up text, the same arguments apply mutatis mutandis to other material,

2The reader is encouraged to try this with a document from the preferred word processor. Even recent
XML-based office formats [DBO06, Mic06] are essentially illegible to humans. Whether they constitute specific
markup generally depends on the way the word processor is used.



30 CHAPTER 2: CONTEXT OF THIS WORK

Figure 2.9: An annotation is connected to its base, a characteristic structure (CS) in the
document. This pair constitutes a characteristic pattern (CP).

e.g., records in a database. Central to the model is the definition of properties, which are
attached to elements of the document. Inferences are then made over these properties, but the
properties themselves are not further defined or explained.

Document markup is information which is conveyed by codes directly inside the document.
Markup is often created by the author of the document at creation time. However, in the case
of interpretative markup it may be inserted later.

Annotations

Annotations follow a similar path as interpretative markup: They are added to the document
a posteriori. In fact, some authors consider markup a form of annotation [OAM99]. However,
unlike interpretative markup, annotations do not reside in the document itself. Instead, they
reside in a separate environment and are linked to the document. A common purpose of
annotations is to clarify some aspect of a document by making further information on this
aspect available.

Humans interpret documents by recognizing sets of elementary signs in functional or per-
ceptual units. These signs are called characteristic structures (or CS for short) [BCM99]. CSs
can take many shapes such as letters of the alphabet or icons in technical drawings. CSs are
associated with a meaning. Such associations are called characteristic patterns (CP). Humans
combine elementary CSs into complex ones, such as words in a textual document or machine
parts in a technical drawing. These complex CSs give rise to complex CPs, enabling the whole
document to be recursively recognized.

An annotation is a note [FFM04] which is attached to a (possibly complex) CS. The CS it is
attached to is called the base of the annotation. In principle, the note itself can take any format,
but it is usually restricted for various reasons in concrete cases. As the annotation explains
the meaning of its base, the pair of base and annotation constitute a CP. This relationship is
illustrated in figure 2.9. The base of the annotation is often marked by a special identifier such
as a curve around a region. The link between the annotation and its base is often also expressed
visually to created a stronger connection of the pair, for example by drawing an arrow.

The previous examples are based on documents with a physical support, e.g., texts printed
on paper. Opportunities to work with annotations have greatly increased since more and more
documents became available electronically. When a document is only available on a physical
support, this limits the amount of annotation which can be attached directly to the document
simply because there is limited space available. Physical annotations can also be made in
separate locations, such as other sheets of paper. Creating a link between the annotation and
its base can then become challenging. Moreover, this link is more difficult to follow for the
reader of the annotation.

Electronic annotation can take a variety of forms. This variety makes an issue of the



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 31

Figure 2.10: Conceptual annotations use a controlled vocabulary to enable shared understand-
ing. Figure from [GSG+02].

availability of the appropriate technology to render the annotation itself as well as the link
to its base. Annotations to documents on paper have a built-in, if not obvious, support for
both [SR03]. However, with computer-based examples, access to the annotation depends on
access to appropriate technologies. In the electronic version, the annotation might be stored
separately from the base document, making annotations more flexible.

Due to the diverse nature of electronic annotations, it is somewhat difficult to define what
exactly constitutes such an annotation. While there does not seem to be general agreement,
most researchers could agree to some of the following points (not all of which must be met by
every application) [SR03]:

• An annotation must be attached or linked to a base document in such a way that it can
be retrieved where appropriate. This might require the use of some specific technology.

• An annotation is viewed alongside the original object.

• An annotation is created after the creation of the base document.

• An annotation does not modify the base.

• The distinction between annotation and document data can be fuzzy and depend on the
activity at hand.

• Some annotations require particular knowledge to decode their meaning.

When the authors of annotations are free to use any language or other description means
they want, this creates a problem of semantic heterogeneity, where it is potentially difficult
to understand an annotation created by somebody else [KS98]. However, annotations can be
used to associate agreed-upon metadata with diverse data sources [GS01, GS02]. Figure 2.10
shows several examples of such conceptual annotations. In this approach, the key idea is to
avoid free-form annotations in favor of more structured descriptions, possibly even controlled



32 CHAPTER 2: CONTEXT OF THIS WORK

by a shared ontology. Documents that are annotated by means of such a shared ontology can
then be integrated via the shared concepts [GSG+02]. A taxonomy of annotation links can be
used to formalize the relationship of an annotation and its base [AFO05].

Improved access facilities to medial data can be provided through annotations on the media.
Most research on such augmented access facilities is done in the area of images. One such
approach is the annotation of images with keywords. The authors of [BDF+03] present a model
that breaks images down into regions (CSs) and assigns words to these regions thus providing
a simple form of CPs. It is assumed that the words are self-explanatory to the target audience.
The regions are computed automatically and assigned with a number of computed features
which pre-iconographically describe the region. Based on these features, words are assigned
to the region. The approach of [BVNK01] is similar to this as it is also uses image regions
(called “spots”) to allow users to pose queries against a collection. Textual annotations over
images are also used to create captions for the images [HPS99]. From images with complex
annotations, captions describing particular aspects of the image (such as which parts of an
object are visible) can be created. The approach is geared towards addition of captions to
graphics in interactive systems. It thus works with a limited set of images of which several
variants exist. Automatic annotation of web pages is also subject of research [MYR03]. All
automatic annotation approaches aim to recognize some features in the base documents and to
then attach annotations built from a limited vocabulary. They therefore implement some form
of conceptual annotations, though the degree of formality of the vocabulary differs greatly.
At the one end of the scale, the vocabulary is assumed to make sense to the reader as plain
language, at the other end, it is backed by precise ontological definitions.

Further annotation systems exist for a variety of content. The systems presented in [PW97,
NSS01] deal with a variety of document formats. Based on the observation that content is
inaccessible without alternative description [NSS01], the authors propose the idea of a web
superstructure which is built from layers of content and metacontent. The meta-layer allows
authors to provide external annotations to resources.

In all discussed approaches, the annotations inhabit an environment different from that
of the base documents. In some cases, the documents and the annotations are restricted to
different kinds of media (e.g., [BDF+03, BVNK01]), in others the two are stored in explicitly
different layers ([NSS01]). Therefore, the process of annotating is not reflexive, in the sense
that a document could be an annotation and the process would stay in the same domain.

2.3.2 Hypermedia

Hypermedia systems interrelate medial content by creating links between these contents com-
monly called documents. This leads to a graph in which nodes are documents and the links
are represented as edges. The functionality of hypermedia systems differs greatly in terms of
supported media types, granularity of links, and the sophistication of display of hypermedia
structures. The granularity of linking refers to the base of links. Some approaches use whole
documents as bases, calling for a rather fine-grained division of documents if precise link bases
are desired. Others can use fragments of documents as link bases, for example single words in
hypertext systems. Hypertext systems in the strict sense only deal with plain text, but many
have been augmented to include other types of content, eventually resulting in hypermedia
systems.

The idea of hypermedia systems as a means that greatly facilitates working with large
amounts of structured content dates back to 1945. In his paper “As We May Think” [Bus45]
Vannevar Bush states the problem of discovery of information in weakly linked structures (e.g.,
libraries which sort alphabetically or by some key), requiring repeated drill-downs along some
ordering scheme to obtain related information. He observes that selection of information in the
human mind works much differently: humans associate related information, there is no global
indexing scheme. To overcome the mismatch in the way information is structured, he proposes
a machine that stores vast amounts of content and provides associative indexing for it.



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 33

Figure 2.11: Linking among hypermedia documents in a web-based hypermedia system.

The term “hypermedia” was first used in 1965 [Nel65] expanding the application of the
hypertext approach to different kinds of documents. An overview of hypermedia systems can be
found in [Con87]. The most famous example of a hypermedia system that is also in widespread
use today is the world-wide web [BLCGP92]. Figure 2.11 shows a collage of screenshots from
a web-based hypermedia system.

Hypermedia systems usually allow the linking of any two of their resources. The system
cannot control whether such a linking is sensible. Some checks can be made with a more
formal model of hypermedia [MGMW05] that helps to capture semantics contained in both
the documents and the links between them. Such a formal model can, e.g., be a conceptual
model [BVA+97, MMWR01]. Hypermedia documents as well as links between them then
become instances of classes from the conceptual model. Constraints can be expressed to allow
only certain types of links between specific classes of documents.

However, a strict formal model also has disadvantages [TW86, SM99]. There is a danger of
cognitively overloading users as formal models tend to force them to produce more fine-grained
descriptions. Fine-grained descriptions also make it more difficult to convey tacit knowledge
that expert authors are not fully aware of possessing. Imposing a predefined structure can be
problematic as authors are then confined to expressing themselves in this structure without
the possibility to start with a broad overview and to later refine their thoughts.

A “scale of formality”, which ranges from plain documents to explicit structure with ex-
plicit meaning, can be established to evaluate the trade-offs between author and reader for-
mality [MGMW05]. By assessing the degree of formality found in semantics representations
for readers, authors, and the system, a comparative analysis can be performed that pinpoints
areas in which “semantic gaps” can occur. An example of such a gap is a system that uses a
highly formal internal representation which is exposed directly to readers and authors.

Recently the focus of research in hypermedia systems has shifted towards knowledge-based
systems with particular regard to the semantic web [BN04, WAS06]. Contemporary hyper-
media systems do not only provide associative organization of information, but incorporate
sophisticated user models to be employed in presentation and information selection. An im-
portant application field is electronic learning.



34 CHAPTER 2: CONTEXT OF THIS WORK

2.3.3 Semantic Descriptions

This section discusses some approaches to semantically describe multimedial content. The
descriptions are made for computers who have little cognitive means to deal with this content—
usually none at all. To provide semantic access to content to a computer, it is therefore
necessary to (a) build a semantic description of what is perceived in the content by a human,
and (b) link the parts of this description to the multimedial parts of the content.

A multifacet formal image model is introduced in [Mec95] . It is constructed for information
retrieval purposes. The model distinguishes two views of the image: a logic and a physical view:

• Physical view : A bitmap representation of the image. Several color encodings are avail-
able.

• Logic view : An integration of all aspects of the image. To create a representation that is
as complete as possible, this view is structured into four sub-views:

1. Structural : Defines which objects are of importance in the image. Identified objects
can be composed of other objects to obtain a tree describing the objects found in
the image.

2. Spatial : The layout of the image is described in a separate spatial view in terms of
spatial extent of the image objects, their overlap, etc.

3. Perceptive: The perceptive view provides the basic visual properties of the image
objects: color, brightness, and texture.

4. Symbolic: This view associates semantic descriptions with complete images or indi-
vidual image objects. Several semantic models are considered for description.

All views serve as background information which the information retrieval process is built
upon. They are targeted at computers and consequently not shown to human users. Based
on the views, weighted models for image-based information retrieval can be built [MCM05],
which aim to integrate human perception characteristics into the retrieval process. Many other
models for image retrieval were built, a summary of trends can be found in [HTS+06].

To provide descriptions of resources on the world wide web, the Resource Description Frame-
work (RDF, [Bec04]) can be used. It provides the means to make statements about resources
that can be identified by a Unique Resource Identifier (URI, [BLFM05]). Basically, RDF state-
ments consist of a subject, a predicate, and an object, e.g., to express authorship of a webpage,
one could state:

http://www.sts.tuhh.de/se.bossung has an author whose value is S. Bossung

Along with other properties of this webpage this is also shown in the RDF graph in fig-
ure 2.12 which consists of three statements about the webpage. As shown in the figure, the
nodes in an RDF graph can be further URI references or literals. Therefore, RDF statements
are essentially triples of URIs in which the URIs are used to refer to what the statement is
about. The use of URIs for this purpose restricts the expressiveness of statements as some
things are not easily referecable by URI. RDF provides a plain text as well as an XML syntax.
Literals can be typed in primitive types, for example those of XML Schema (see section 2.4.1).

The fact that all entities are identified indirectly by reference as is illustrated by the following
example (from [Bec04], URIs slightly abbreviated):



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 35

Figure 2.12: A simple RDF example. URI references are given in ellipses, literals in rectan-
gles.

<rdf:Description rdf:about="http://.../rdf-syntax-grammar">
<ex:editor>

<rdf:Description>
<ex:homePage>
<rdf:Description rdf:about="http://.../net/dajobe/"/>
</ex:homePage>

</rdf:Description>
</ex:editor>

</rdf:Description>

This example even omits all necessary namespace declarations for the prefixes rdf: and
ex:. The high amount of URIs in RDF statements makes it difficult for humans to work with
RDF directly, requiring tool support [QKH03] for such basic tasks as creating RDF statements.

In plain RDF any resource can be described by any predicate with any further entity. This
freedom can make the use of RDF in specific application domain difficult. Users of these
domains usually have a clear understanding of the domain and communication between users
is done through agreed vocabulary of the domain. To restrict the vocabulary that is available
in an RDF description, RDF Schema [RDF04] can be used.

The Web Ontology Language (OWL, [BHH+02]) uses RDF and RDF Schema to express
ontologies. Its purpose is to formally describe the vocabulary used in RDF descriptions of
web resources. OWL is made to be machine-readable and is not intended for consumption
by humans. Rather, OWL documents are authored through tool support which benefits from
extended services [LBF+06]. OWL provides three sublanguages with increasing expressiveness
at the cost of increasing difficulty of providing services on them.

In the context of the semantic web, a standard has emerged that aims to suit most ap-
plications in the field of information retrieval based on multimedial content. The MPEG-7
standard [Mot03] put forth by the Motion Picture Experts Group deals with the description
and annotation of multimedial content. A key motivation for the creation of MPEG-7 was the
simplicity—perhaps more adequately the poverty—of previously available descriptions of mul-
timedial content. It was “necessary to develop forms of audiovisual information representation
that go beyond the simple waveform or sample-based, compression-based (such as MPEG-1
and MPEG-2) or even objects-based (such as MPEG-4) representation” [Int04]. Therefore,
MPEG-7 builds on these low level descriptions of the previous MPEG standards and adds ad-
ditional layers of abstraction. It is expected that this will enable richer multimedial application
which can provide more useful capturing and retrieval means to users.

The prime focus of the standard is on audiovisual content, but this is not a limitation in
principle. A variety of abstraction levels can be used for description, starting with very low



36 CHAPTER 2: CONTEXT OF THIS WORK

Figure 2.13: The Caliph tool for capturing MPEG-7 media description on pho-
tographs [LBK03]. The semantic description in the middle part captures a portion of the
document that is also shown in figure 8.5.

level descriptions which deal with the primary building blocks of the content, e.g., colors or
textures of images. On higher levels of abstraction means are available to sum up these lower
level descriptions. Common examples are chord patterns of music or visual areas in images.
Descriptions refer to units of content called features.

The MPEG-7 standard is divided into several parts including:

• Multimedia Description Schemes. The description tools dealing with generic features and
multimedia descriptions.

• Visual and audio description tools. For the features of the multimedia documents, syntax
and semantics of their descriptions (called descriptors) are defined. The means to create
relationships (in Description Schemes) between these features are provided.

• Description Definition Language. Used to define the available descriptors to describe
multimedial documents as well as for extending the description capabilities by providing
new Description Schemes. The Description Definition Language is based on XML Schema
but adds some MPEG-7 specific features.

• Schema Definition. Specifies the schema using the Description Definition Language.

Other parts of MPEG-7 include systems, software, profiles, testing etc., but these are not
of direct interest here. A complete list of the parts of MPEG-7 can be found in [Mar02b]
or [Int04].

MPEG-7 thus provides means to describe content at various levels. Typical applications
include image/video annotation and query, content classification, but also low level descriptions
of audio [KM05]. Figure 2.13 shows an example of an image annotation tool. Users are able
to capture technical metadata of the image (similar to those usually stored in EXIF [ASE02])
and manage low level descriptors (such as color distribution), but can also create semantic
descriptions of the image. The screenshot in figure 2.13 shows an example where temporal
and spacial entities are interrelated. The entities are created and managed separately. Such



2.3 SEMANTIC MODELS FOR MULTIMEDIAL CONTENT 37

Figure 2.14: MPEG-7 Semantic Description Schemes [Int04].

a description provides a structured representation of the image. The advantage is that to a
machine the image is no longer one opaque string of bytes and retrieval can be based on the
entities depicted in the image. There also is a corresponding retrieval tool, see [LBK03] for
more details.

The structure of the semantic descriptions as well as their interrelation with the low level
descriptors (Segments and Analytic Model) is depicted in figure 2.14. The central idea is that
from an abstract SemanticBase description scheme several concrete schemes are derived, cov-
ering time, place, events, etc. On the one hand, a semantic description of the multimedial
content is created from descriptors according to these semantic schemes. On the other hand,
the content is also annotated with low level descriptors which can be put into relations with
the semantic descriptors. This creates an integrated representation of the content.

The MPEG-7 standard provides many means to structure the content and proposes ap-
proaches to semantically describe the structures. These means can also be applied to larger
collections of content. As the amount of content grows larger, ensuring coherent semantic de-
scriptions becomes difficult. MPEG-7 alone focuses on individual pieces of content and does not
cope with semantically interconnecting diverse collections (as is, e.g., necessary for semantic
web applications [Tro03]). In essence the problem is that MPEG-7 provides means to attach
semantic descriptors to content, but does not provide help in defining the semantics of the de-
scriptors used. Several authors (e.g., [HBHV04, Tro03]) have noticed this semantic integration
problem and propose the combination of ontologies with MPEG-7. The aim is to build large
collections of diverse content with coherent semantic descriptions. An ontology to represent
MPEG-7 metadata terms has been presented in [Hun01]. Based on this ontology, the semantic
descriptors for a particular application can be defined [Tro03].

Kosch [Kos02] notes that MPEG-7 lacks some concepts of multimedia databases such as
ways to introduce different levels of abstraction for media segmentation. He also considers
the semantic model, which MPEG-7 provides to describe narrative worlds, to be rather weak
because it is not extensible enough.



38 CHAPTER 2: CONTEXT OF THIS WORK

By means of semantic descriptions, MPEG-7 enables the creation of descriptive represen-
tation of the multimedial document. Its overall meaning, however, is outside the scope of
MPEG-7. Along the same line, MPEG-7 does not deal with the interrelation of documents,
especially not with those of segments of one document to other documents. The definition of
the semantics of the descriptors (even the semantic ones) are left to other technology, such as
ontologies, and no attempt is made to cover these semantics through, e.g., description with
other multimedia documents.

2.4 Introduction to Some Technologies

This section briefly introduces some technologies that are of interest in the implementation of
systems which support work on semantic descriptions of multimedial content. These systems
will be presented in chapter 5.

2.4.1 XML Schema

XML Schema is a language to specify the grammar of XML documents. XML Schema defini-
tions are themselves proper XML documents such that they can be edited with the usual XML
tools. XML Schema is a rather elaborate W3C recommendation (see [FW04] for an overview),
only some of its parts will be described here.

The general approach to XML Schema is to define the structure of each XML element that
can occur in documents adherent to the definition. Such definitions are generally referred to
as schema. The schema defines the structure of elements in basically two ways: by listing their
attributes and by their substructure, that is, the child elements that can be contained in the
described element. XML Schema assigns a type to each node in the XML document tree. This
type can be either complex or simple. It is complex if it describes child elements, it is simple
otherwise. Plain data such as character string, dates, numbers, and booleans are covered by
simple types that are built into XML Schema. A complex type could be defined as:

<xs:complexType name="TypeA">
<xs:sequence>

<xs:choice>
<xs:element name="this" type="xs:string"/>
<xs:element name="that" type="xs:string"/>

</xs:choice>
<element name="last" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

The elements conforming to type TypeA contain two elements: First an xs:string which
is either called this or that followed by an xs:integer in a last element. While the
type does define the names of sub-elements it does not define the name of the element(s) that
comply to it. This is important to facilitate reuse. Attributes can also be declared in a complex
type:

<xs:complexType name="TypeA">
<xs:sequence>

... </xs:sequence>
<xs:attribute name="attribute1" type="xs:dateTime"/>

</xs:complexType>

Attributes are declared last and must be of simple type as an attribute in XML must have
a character value. Admissible elements are defined alongside their types:

<xs:element name="elementA" type="TypeA"/>



2.4 INTRODUCTION TO SOME TECHNOLOGIES 39

Element declarations are also used inside complex types as in the above example of TypeA.
Of course, the elements declared in complex types can again be of complex type.

XML Schema allows the definition of new types based on existing ones. This is called an
extension. Extensions can be made from both simple and complex types. With simple types,
extensions can, e.g., restrict the range of integers or define a regular expression to be observed
by character strings. Complex types can define additional sub-elements and attributes:

<xs:complexType name="TypeB">
<xs:complexContent>

<xs:extension base="TypeA">
<xs:sequence>

<xs:element name="newInB" type="xs:string"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:compexType>

Extension of complex types does no effect on substitutability of elements. An element of
an extended type cannot necessarily be substituted for an element of the base type. Instead,
the substitutability of elements is defined explicitly by placing elements that are substitutable
for each other in substiution groups:

<xs:element name="woman" ... substitutionGroup="human"/>
<xs:element name="man" ... substitutionGroup="human"/>

This means that anywhere an element from the human substitution group is declared, any
other element from this group may also occur.

2.4.2 XML Inclusions

The XML Inclusions recommendation ([MO04], abbreviated XInclude) put forth by the W3C
specifies the inclusion of XML documents into XML documents. Inclusion facilities are often
found in programming and markup languages to enhance modularity. Inclusion facilities for
specific purposes have been part of many particular XML grammars. XIncludes defines a
general purpose facility to enable generic support of inclusion by XML authoring and processing
tools.

XInclude defines a processing model to enable such modularity for XML documents. XIn-
clude does not work at presentation level (such as, e.g., the embedding of a media object in an
HTML page) but on the information sets representing the XML documents. This means that
it is media type dependent and can only include XML documents into other XML documents.

The two documents that are related by an inclusion, remain independent entities. This
means that both documents are loaded and parsed independently. Therefore, a failure to
(temporarily) retrieve a referenced document is not necessarily a fatal error.

Inclusions are defined in an XML-friendly manner by an <xi:include> element. It is the
purpose of this element to specify the document to be included by means of a URL as well as
the manner of its inclusion. A simple example of an inclusion thus is:

<?xml version=’1.0’?>
<my:document

xmlns:my="http://example2.org"
xmlns:xi="http://www.w3c.org/2001/XInclude">
<xi:include href="http://example.org/other.xml"/>

</my:document>

In addition to this, XInclude provides meachanisms to include only parts of an XML docu-
ment or to include the referenced document as plain text. Document authors can also specify
fallback content to be used if the referenced resource cannot be accessed.



40 CHAPTER 2: CONTEXT OF THIS WORK

declare namespace bill="http://localhost/testbill/bill.xsd";
declare namespace n="http://localhost/bill summary";
declare function local:totalValue($bill as element) as xs:double {

sum(for $l in $bill/bill:line return
($l/bill:qty * $l/bill:itemPrice))

};
<n:result>{

for $day in (’Mon’, ’Tue’, ’Wed’, ’Thu’, ’Fri’)
return
<n:day name="{$day}"> {

for $bill in /bill:bill[contains(bill:due-date, $day)]
return

<n:bill-summary>
<n:short-sender>

{$bill/bill:addressing/bill:sender/bill:company/text()}
</n:short-sender>
<n:short-receiver> {...} </n:short-receiver>
<n:item-count>{count($bill/bill:line)}</n:item-count>
<n:total-value>{local:totalValue($bill)}</n:total-value>

</n:bill-summary>
}

</n:day>
} </n:result>

Figure 2.15: Example of a more complex XQuery that uses many of the features described in
this section. The query creates a well-formed XML document with bill summaries aggregated
by day of week.

2.4.3 XML Query

The language XML Query (XQuery) is a language to pose queries against XML documents.
This section will give a very brief introduction to the parts of XQuery that are used in this
thesis. A more complete description can be found either in the W3C recommendation [BCF+05]
or in an introduction by Philip Wadler [Wad02]. This overview follows the one given in [Bos04].

XQuery is a functional language that attempts to fulfill the needs of two comunities: Those
seeing XML as documents (largely coming from the HTML or plain SGML worlds) and those
treating XML as data (mainly in semi-structured databases and data exchange between sys-
tems). XQuery uses XPath as a technique for selecting nodes. The return type of any expression
in XQuery is a sequence of XML nodes (even though many of these only contain zero or one
values). A sequence is ordered and may contain duplicates.

Some important XQuery constructs are described below. Figure 2.15 shows a more complex
query that uses these elements.

XQuery allows the construction of new nodes (elements, attributes, text, etc.). The syntax
for this is the same that would appear in an XML document which contains the respective
node. The following code will for example construct an element node called “result” with an
attribute called “name” (and value “first result”). The element contains the text “123”:

<result name="first result">123</result>

Enclosed expressions are closely related to constructors. Curly braces “{” and “}” are used
to disambiguate expressions nested inside constructors from literal text. Consider this example:

<result>{ $a }</result>



2.4 INTRODUCTION TO SOME TECHNOLOGIES 41

The contents of the “result” element will be the value of variable a. By contrast, without the
curly braces the contents of the “result” element would be the text literal “$a”.

XQuery uses path expressions for selecting nodes. XPath expressions are made up of several
steps that start from a sequence of context nodes, e.g., from the root of a document. The
different steps are deliminated by forward slashes “/”.

/bill/sender[@name="Peter"]

This will start from the document root and select the element <bill/> and then descend
to its child sender. All <sender/> elements that are children of a <bill/> element are
returned if they have a name attribute (denoted by the “@”) with value “Peter”’. XPath is
not limited to navigating from an element to its children. It allows different navigation paths
called axes. Another important axis is “descendent-or-self”: the node or any of its descendents.
For example

/descendent-or-self::*

simply selects all nodes in the document. Results of path expressions are—of course— sequences
of nodes.

Iterating over a sequence of nodes is important in XQuery. First selecting a sequence
of nodes via a path expression and then iterating over it to perform a transformation or
computation is common practice. The syntax of the FLWOR (for-let-where-order by-return)
expression is illustrated in this example:

for $bill in /bill
let $name := $bill/sender/@name
where $bill/@total-sum > 100
order by $bill/@total-sum
return

<sender>{ $name }</sender>

The first line is an iteration over all nodes in /bill, where in each iteration the current node
is bound to the variable $bill. The next line then binds an additional variable $name to
the name of the sender of the bill. The where clause filters the sequence over which to
iterate to only contain bills for which the total-sum is over 100. Order by sorts the bills by
their total-sum attribute. Finally return gives the expression that is evaluated for every
iteration with the new variable bindings.

The output could look like this:

<sender>Peter</sender>
<sender>Texaco</sender>
<sender>Real Stationary</sender>
<sender>Infinite Computers Ltd.</sender>

Note that this is not a well-formed XML document.
XQuery has many built-in functions but also allows users to specify their own. Calling

functions is quite simple:

<overall-sum>{ sum(/bill/@total-sum) }</overall-sum>

This example sums the totals of all bills and puts the result as the contents of the overall-sum
element. Note that the sum function works on a sequence of values. User defined functions are
also possible. As an example consider the function totalValue in figure 2.15. The function
is declared in two parts: The signature and the body expression. The signature gives the
namespace (local in this case), the function’s name (totalValue), the arguments along
with their types ($bill of type element), and the return type (xs:double). The body can
be any XQuery expression. The example iterates over all line elements under the element
passed to the function and multiplies the values of their qty and itemPrice elements. The
sum function then computes the total of all the values in the sequence, this value is returned
by the function.



42 CHAPTER 2: CONTEXT OF THIS WORK



Chapter 3

Core Asset Expression Language

During the course of our life, each of us acquires large amounts of knowledge about our sur-
roundings. When confronted with a new situation, we make use of this knowledge to interpret
the objects and events at hand. Such an interpretation can only be successful if we are equipped
with the appropriate contextual knowledge to deal with the new situation.

As an example, consider a photograph of a street scene. Recognizing it as such requires
familiarity with various concepts such as cars, pedestrians, shops, or traffic lights. As these
are concepts of everyday life, most people of contemporary cultural heritage will have no
problem with their identification and their meaning. However, if the photograph were to depict
something more particular, not everybody would be able to make the required interpretations.

Medial content—such as a photograph, a painting, a movie, or a written text—can be
interpreted and understood in much the same way: by application of the appropriate parts from
our contextual knowledge. This contextual knowledge is called the context in the following.
Obviously, any two persons are likely to have different contexts. This can for example cause
them to interpret the same medial content differently. One person might feel threatened by
a certain image, while another might not. The contexts can also differ in terms of what is
contained in them. This can cause one person to not be able to interpret content because of
the lack of knowledge about central parts. Another might be knowledgable about those parts
and therefore able to interpret the content. The latter person could then explain the meaning
of the content by conveying the meaning of the missing parts.

The Asset Expression Language (AEL) is used to provide such explanations by giving
conceptual abstractions for pieces of content. The expressions represent real-world entities in
both a medial as well as a conceptual way. Existing expressions can be combined into larger
ones. The AEL also allows for substructuring of content to refer to individual pieces. Asset
Expressions borrow the concepts of abstraction and application from the λ-calculus.

The description of the meaning of an entity in terms of the meanings of its subcomponents
is not uncommon. It is used, for example, in the denotational approach to define the semantics
of programming languages. Stoy [Sto77, p 20] notes that “in the denotational definition, [. . . ],
the value of the program is defined in terms of the values of its subcomponents” (also see
section 2.2.2). This is applied in a divide-and-conquer manner until it ends in subcomponents
which are simple enough to be interpreted correctly. What exactly these atoms are depends
on the intended audience, who has to be able to interpret these atoms based on their contexts.

A similar notion is used here for medial content: If the whole of the content cannot be
understood in one piece, some explanations of its key elements are given. These explanations
can again use medial content. Therefore, small-scale explanations are recursively repeated to
build larger structures which capture a portion of some domain. It is hoped that—if the gap in
contextual knowledge of the audience is not too large—this can eventually end in descriptions
which can be understood given the particular contexts of the audience.

This chapter describes Asset Expressions which are used to handle these issues of lacking

43



44 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

contextual information when dealing with medial content. They do so by using medial content
to explain parts of another content. More specifically, their workings can also be broken down
into several means. The first is the identification of gaps in contextual information, which have
to be filled. Next, particular pieces of the content can be identified that require these further
explanations because they cannot be understood from contextual information alone. Finally,
existing or new explanation structures can be used to fill the gaps in the context in connection
with the parts identified in the previous step.

The term “content” in this work refers to an instance of a multimedial resource. Examples
include images and audio recordings, but the notion of content adopted here is broad enough
to also span plain text or combinations of other formats. Content is in other work sometimes
also referred to as “documents”, “multimedial artifacts”, etc.

3.1 Plain Asset Expressions

The problem of missing contextual information does not only occur when interpreting medial
content. When programming a computer, one runs into similar issues. Any sequence of state-
ments might for example make reference to memory locations in order to retrieve parameters
to an algorithm. These references are not obvious1 from the statements themselves. Consider
as an example the following pseudo code:

i = 1: integer; j = 1: integer; k: integer; n: integer
for count from 0 to n do
begin

print i
k := i + j; i := j; j := k

end

It is not apparent at first glance that one needs to bind a value to n (but not to k) in order
to meaningfully invoke the algorithm.

A common notion in computer science is that of signatures. The key idea is to identify and
make explicit any unbound variables in the part of a program that is covered by the signature.
This provides users with information on what they need to supply before invocation. By
defining a function signature, it can be made clear that a value for n is required:

function fibu(n: integer): integer
begin

// code from above
return k

end

This is akin to requesting additional contextual information to be able to interpret medial
content.

Applying a similar notion to content, one observes that some parts of this content require
additional information to allow the content to be understood. These parts (free variables in the
programming language analogy) are bound in the signature over the content. The content is
considered to denote a real-world entity. The content is interpreted by the user, the result of this
interpretation is the denoted real-world entity. This interpretation can only be carried out if
all variables bound in the signature are supplied with actual parameters. In other words: Users
might lack some contextual knowledge, which is needed for a full understanding. Signatures
over function bodies point out the free variables used in the function, signatures over content
do the same for contextual knowledge. As illustrated in figure 3.1, Asset Expressions capture
this denotation by building larger structures.

1In many cases they can be derived but for more complex code it is certainly difficult to determine.



3.1 PLAIN ASSET EXPRESSIONS 45

Figure 3.1: Asset Expressions model entities from the real world. Through abstraction and ap-
plication different expressions can be related, thus denoting relationships between the respective
entities.

A very concise yet powerful approach to specify signatures is the λ-calculus (see section 2.2.1
and [Rev88]). In its simplest form it is based on only three concepts: variables, abstractions and
applications. Asset Expressions borrow the concepts of abstraction and application to express
signatures over content and the application of explanations, respectively. The core syntax of
Asset Expressions is similar to that of the λ-calculus, it will be detailed in this section.

As Asset Expressions allow for abstractions over any multimedial content, this does intro-
duce the problem that variables in the content cannot be identified by name equality as is
common in the λ-calculus. In the λ-calculus, occurrences of variables that are bound through
abstraction are easily traceable in the expression by name equality and scoping rules. In mul-
timedial content, other means of pointing out the variable in the content are required (content
does not contain the symbol x). This is handled by deep content structuring in section 3.2.
Section 3.3 introduces a typed version of Asset Expressions.

3.1.1 Syntax

Asset Expressions must deal with medial content which is to be shown directly in the expression
itself. Even if—for purposes of abstraction and application—a name for the medial content were
used instead of the content itself, this name had to be bound somewhere, ultimately making it
necessary to show the content verbatim. Besides this, it is felt that direct abstraction over the
medial content enhances the user’s ability to interpret the expression as the entity it denotes. If
this is desired, Asset Expressions offer means to bind a particular content to a name. Therefore,
the syntax of Asset Expressions is not a plain textual one but includes representations of medial
content as well.

A simple example which explains the person shown in a painting is:

(λperson. )Napoleon

The syntactic elements are described below.

Content

Any multimedial content can in principle be used in Asset Expressions. More precisely, a
representation of the content can be used. The choice of content types which are available to



46 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

construct Asset Expressions might be limited by the medium used to present the expressions.
In some cases a preview of the content may be more feasible for particular types of content (e.g.,
video or audio when the expression is presented on paper). This preview or the representation of
the content is shown directly in the expression. In the plain form of Asset Expressions, content
remains an opaque whole which has no further substructure. The potential of substructuring
is explored in section 3.2.

Naming Expressions

For further reference expressions can be bound to a name. This name can be used in other
expressions to refer to the named expression. The syntax for binding an expression to a name
is:

name := expression

The name can then be used in place of the expression. A name definition evaluates to the
expression the name is bound to.

Abstraction

Abstractions are shown in style of the λ-calculus:

λvariable.expression

Abstraction is right-associative. The above means that an explanation is required for this
expression to be understood. This requirement is given a name (variable) for future reference.
As in the λ-calculus, the abstraction creates a function with one parameter, see section 2.2.1.
One can for example require an explanation of a person shown in a painting:

λperson.

There may, however, be several explanation requirements in the content that is abstracted
from. Multiple abstractions are then used to capture these:

λinscription.λperson.

To express such multiple-argument signatures, the notion of currying2, known from func-
tional languages in general and the λ-calculus in particular, is used here as well. The idea
of currying is to transform a function that takes several arguments and returns a result into
a function with one argument. The function with one argument returns as its result a new
function that requires the remaining arguments of the original function. The signature in the
second example includes two parameters: inscription and person. By means of currying the
first abstraction constructs a function with one parameter (person), the second abstraction is
performed over this function introducing the second parameter inscription.

2The notion of currying was named by Christopher Strachey after the logician Haskell Curry. Currying was
introduced by Schönfinkel [Sch24] and extensively used by Curry.



3.1 PLAIN ASSET EXPRESSIONS 47

Application

Explanation needs identified by abstractions can be met by means of applications. A second
expression is applied to an abstraction. Asset Expressions follow the syntax of Revesz [Rev88]
as the use of whitespace in applications can make expressions difficult to read in the presence
of multimedial content.

(expression1)expression2

expression1 is applied to expression2. Application is right-associative. Usually, there will
be an abstraction in expression1 to match the application, but this is not enforced by plain
Asset Expressions. The expression expression1 is also called the operator, expression2 the
operand. An application which corresponds to an abstraction is said to meet it. Vice versa the
abstraction is called filled.

Consider the following example:

(λperson. )Napoleon

It is assumed that the expression Napoleon has been defined previously. Several abstractions
are matched with several applications:

((λinscription.λperson. )References)Napoleon

A pair of abstraction and application is also called an explanation as it is normally created
to provide information on (i.e., to explain) some aspect of the content that is abstracted from.
In expressions without open abstractions the order in which abstractions and applications are
given does not matter, as long as they match. The previous expression denotes exactly the
same entity as:

(λinscription.(λperson. )Napoleon)References

Lists

Lists of Asset Expressions are enclosed in { and }. The elements are separated by commas:

{e1, . . . , en}

Lists are valid Asset Expressions and can be used anywhere a simple expression is expected.
This is for example useful to deal with content which comes in multiple parts such as scanned
pages of a document:



 , , , . . .





As they are normal Asset Expressions, abstractions and applications can be used over lists,
or lists can be used as the operand of an application:

(λx.{e1, . . . , en}){f1, . . . , fm}

In this example, the list of expressions {f1, . . . , fm} describes some joint aspect of the



48 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

list of expressions {e1, . . . , en}. Note that the abstraction pertains to the whole of the list
{e1, . . . , en}. The operand can again be a list (as in this example) but does not have to be:
there is no matching between the elements of the lists.

A simple grammar of Asset Expressions is:

expression ::= variable | content | application | abstraction

application ::= (expression)expression

abstraction ::= λvariable.expression

The full grammar of Asset Expressions is given in section 4.7 after all language elements
have been introduced in chapters 3 and 4. This grammar is unambiguous, therefore the abstract
syntax tree of expressions is always unique.

3.1.2 Visual Notation

As Asset Expressions deal with multimedial content, a visual notation sometimes suggests
itself. After all, a part of the expression is not representable in a textual form anyhow. A visual
notation for Asset Expressions is introduced here. It resembles conceptual graphs [Sow00] in its
directed connections between entities, however, the notation is not the same. Unlike conceptual
graphs, it emphasizes medial representations of entities. The notation is illustrational in nature
and will not be used in places where some degree of formality is required. The core primitives
of this notation are defined along the syntactical elements of Asset Expressions:

Content

The notation for content remains as it is, the content is shown directly:

Abstraction

Abstractions are shown as boxes in which the name of the variable is given. The boxes are
connected to the expression they abstract from, which can be a content.

Note that abstractions are not ordered as in the proper textual syntax because the visual
notation does not use currying but allows for several parameters in the signature.

Named Expressions

The definition of named expressions is shown just as in the textual syntax. To refer to a name
elsewhere, an ellipse is used:



3.2 CONTENT COMPONENTS 49

Application

Arrows are used for applications. The arrow points from the operand to the operator.

There is no special representation for lists, they are lists of visually represented expressions.
When applying a list to an abstraction, an allowed shortcut is to show several individual
applications instead of the list. This can be used to improve the layout of expressions.

3.1.3 Lifecycle

Asset Expressions are created with the constructors introduced in section 3.1.1. New expres-
sions can be based on existing expressions by referencing these expressions by name:

e1 := λx.C e2 := (e1)D=(λx.C)D

The use of e1 in e2 has reference semantics. Any referenced name must be previously bound.

e1 := λa.e1 ;error, cannot use e1 on right-hand side, not bound

In general, names can be rebound by the same means used for initial binding:

e1 := (C)E

This implicitly changes e2 which references e1 to e2=((C)E)D. With plain Asset Expres-
sions, care should be taken with such rebindings as they can heavily change the semantics
of referencing expressions. The typed Asset Expressions introduced in section 3.3 take some
precautions to limit rebinding issues.

Finally, names can be unbound:

remove e2

This is, however, only legal if the name is not referenced from any expression. Thus, with the
definitions above, e1 cannot be unbound. remove e frees the name e and deletes the expression
bound to it. However, it does not cascade to expressions referenced from e.

3.2 Content Components

In programming languages, parameters of function signatures, such as the one shown in the
example in section 3.1, refer to a particular part of the function body, specifically to variables.
Variables can be clearly identified in the language used for the body. They can also be connected
to the parameters in the signature, the usual means to this end is name equality. Name equality
of parameter and body variables is referred to as Barendregt convention ([Bar85], figure 3.2(b))
in the context of the λ-calculus. There also exist other means such as de Bruijn’s numbering
scheme (see [Bru72] and figure 3.2(c)) for free variables. Instead of writing variables in the
body as a name, they are simply numbered in de Bruijn’s schema and abstractions do not
need to mention any name at all. Rather, the connection between abstraction and variable is
made by the numbering and the order of the abstractions. Stoy [Sto77] uses visual notation to
connect abstraction and abstracted variable, see figure 3.2(d). This notation does not provide
a textual syntax for variables at all. Instead, it simply connects the abstraction with the place
in the body that is abstracted from.



50 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

(a) Function in pseudo-code (b) Barendregt

(c) de Bruijn (d) Stoy

Figure 3.2: Different ways to connect parameters from the function’s signature to variables
in the body. Barendregt [Bar85] uses name equality, de Bruijn [Bru72] numbers free variables
of expressions, and Stoy uses a visual notation [Sto77].

Addressing parts of medial content is more difficult than just mentioning a name or doing
abstractions in the right order. Different kinds of content are represented in a diverse variety of
languages (e.g., bitmap images in pixels, XML documents in text). These languages generally
do not introduce the concept of a variable. Unfortunately, this concept can also not be added
to them without breaking the content by violating its customary format. Consider the example
in figure 3.3(a) and imagine that it is necessary to further explain the person on stage. Doing so
first requires this person to be identifiable. In video this can for example be done by specifying
the spatial extent of interest and giving a time interval over which it is valid. Abstractions
in Asset Expressions make the need for such an explanation explicit. However, in plain Asset
Expressions abstractions are made over the content as a whole. There is no mention of any
particular part of the content that the need for explanations might arise from. To allow
abstractions to be more specific, content can be divided into components. Abstractions are
then made over these components instead of over the content as a whole.

Figure 3.3(b) gives an example of a visual notation of such a component and an accompa-
nying abstraction. First, the component is created (dashed box). The subsequent abstraction
is over this component. Clearly, one cannot draw dashed boxes into XML documents without
conflicting with their nature as XML documents, which includes being plain-text. Means for

(a) Video (b) XML

Figure 3.3: Selecting components of a video by combination of time interval and geometric
area.



3.2 CONTENT COMPONENTS 51

Figure 3.4: Image with two persons in different roles.

introducing components into various kinds of content will therefore be discussed below. In
addition, there are provisions to handle components and connect them to abstractions.

3.2.1 Components

If an abstraction is created to request an explanation, the creator of the abstraction is often
able to point out which particular part of the content is not understood. This also allows the
subsequent application to be more precise. In the context of several abstractions over a single
content ambiguities might arise without the connection of abstractions to a part of the content.
Consider as example the picture in figure 3.4 which shows multiple persons in different roles.
To explain the concepts of president and aide, corresponding abstractions are created to be
filled with applications of expressions giving details on presidents and aides. However, if the
abstractions over the photograph cannot make a connection to the medial presentation of the
person they refer to, much is lost. Clearly, it can be important to the understanding of the
picture to know who is the president and who is the aide.

To allow this kind of detailed connection between abstractions and parts of the content,
content components are used. Components are parts of some larger piece of content. Com-
ponents have a name, which is used to refer to them. The component also needs means of
addressing which part of the original content it covers. These addressing means depend on
the kind of content at hand, e.g., addressing in images is quite different from addressing in a
piece of audio. These addressings are called selectors (as they select some part of the content
to create the component). Different selectors for various kinds of content will be discussed
subsequently. The model for annotations presented in [BCM99] introduces the notion of char-
acteristic structures which are similar to the content components of Asset Expressions in that
the base document is composed of such structures and these structures can be subdivided into
structures of finer granularity.

Selectors are tuples of addressing information which could be encoded just like records
(see [Rev88]) in the λ-calculus. However, considering that the resulting expressions are quite
lengthy and that selectors occur rather frequently, an abbreviated syntax is introduced. A
selector is simply written as a comma-separated list of addressing information enclosed in
pointed brackets:

<. . . , . . .>

The part of the content that is addressed by the selector must again be a well-formed
instance of this kind of content. This restriction enables composability of content pieces, which
is important to language features introduced in chapter 4. For example, a selector over a piece
of audio must address a subpart of this audio which can again be played as audio. If addressing
were on byte-level on a compressed audio file, this would probably not be the case for all byte
intervals. Selectors over XML documents must always result in well-formed XML.



52 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Components are created on content by the application of the function child. This is a
built-in function which takes three parameters: (1) the name n of the new component, (2) the
selector s to address a part of the content and (3) the expression C in which the component is
created.

(((child)n)s)C

It returns a new Asset Expression, e.g., a content, which has an additional component
named n identified by the selector s. The name of a component must be unique within the
content. With a visual notation to show components of content, this can be used as follows:

ecomp := (((child)”JD”)<coords-rel, (0.1,0.2), (0.4,0.9)>) =

Several components in a single piece of content can be created by repeated invocations of
child. With components in the content, there needs to be a way to refer to them by tieing them
to abstractions which provide explanations for this part of the content. Without components,
one might have written an expression as follows:

PresidentOfAtlantis := . . .

(λpresident. )PresidentOfAtlantis

In this expression it is unclear whether the president is wearing a hat or not. To mark
the president, a component is introduced into the content as in expression ecomp. A direct
abstraction over this expression (i.e., the content including a component) could still not achieve
the desired effect as there is now an abstraction and a component, but no connection between
the two (one needs to keep in mind that there might be multiple components). To make this
connection, the right component needs to be exposed for the abstraction. This is done using
expose:

((expose)n)e

Where n is the name of the component to expose and e is an expression in which this
component can be found. e does not have to be a plain content, but can be any expression
which contains such a content. If a component named n cannot be found in the expression e,
this is an error.

Using expose can be thought of as making the named component the currently active one, on
which further expressions can be built. For more details see section 4.3, where additional ways
to handle components are also discussed. An example is an abstraction over this component:

epres := (λpresident.((expose)”JD” )ecomp)PresidentOfAtlantis

epres “pulls out” the component and makes it available to the subsequent abstraction. The
abstraction is now specifically over the component and does not apply to the whole of the
content. Abstractions over the complete content are of course still possible and also useful.
Such an abstraction will for example be created if there is no distinct part of the content
representing the particular aspect of the described entity. This is true, e.g., for the artist who
created a painting or the epoch it belongs to.

Since they depend on each other, expose will be used about as often as a selector. Thus it
makes sense to introduce an abbreviated syntax for exposing components:



3.2 CONTENT COMPONENTS 53

((expose)n)e ≡ [n]e

The prefix notation is necessary because there might be several exposures for different
abstractions from expressions e. The expression epres can now be written more concisely as:

epres := (λpresident.[”JD”]ecomp)PresidentOfAtlantis

Besides abstractions over components, exposure can also be used to define nested com-
ponents. This is achieved by a combination of child and expose. The selector of a second
invocation of child then selects from the part of the content that is addressed by the first
selector. In an image, it is for example relative to the area of the outer component:

(((child)”foot”)<coord-rel, (0.1,0.5), (0.5,0.9)>)[”JD”]ecomp=

The previous expression is based on ecomp, which contains a component called “JD”. This
component is exposed using the abbreviated syntax [”JD”]. A new component is identified by
relative coordinates and named “foot”. As the component is created in an expression which
has an exposed component, the new component becomes the child of the exposed component.
Making the binding of an explanation to a component a two-step process with child and expose
has the benefit that further handlings of components besides expose can be offered. These are
useful in content construction and will be introduced in section 4.3.

3.2.2 Selectors in Different Kinds of Content

A variety of types of content is available upon which Asset Expressions can be based. These
content kinds differ fundamentally in their nature. Figure 3.5 shows a partial taxonomy of
content kinds. This section introduces some selectors for each of these content kinds.

Inside the pointed brackets, selectors contain a list of addressing information appropriate
to the content at hand. To disambiguate different kinds of addressing for the same kind of
content, the first element of this list is the selector kind. It states which addressing mechanism
is to be used. Thus, the syntax for selectors is:

<selector-kind , address-info>

The available ways to address a piece of content in a selector are dictated by the kind
of content that is selected from. Two dimensional images lend themselves to coordinate-
based addressing schemes (measured either in absolute pixels or in relative terms of the image
dimensions). Audio content can for example be addressed with time intervals. Content with
inherent substructure (such as semi-structured documents) can call for still different addressing
schemes.

As a large body of work is available on addressing substructures in multimedial content
(e.g., [KM05, LÖSO97, NSS01]), this section does not aim to provide a complete set of selec-
tors for all possible kinds of content. For prominent kinds of content some selectors will be
discussed below. Additional selectors for Asset Expressions can be defined by the addressing
means provided in the cited literature or those given in the MPEG-7 standard [Mot03] and its
extensions. Table 3.1 shows some examples.

First of all, the addressing of content pieces depends on content structure:



54 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Figure 3.5: Content kinds with technical content types that are examples for each kind.

• Linear. Examples of linear content include plain text or audio, which are perceived along
a single dimension. This dimension can be in time or space.

• Trees. This class contains semi-structured document formats, e.g. XML3, XHTML4, and
other tree-like document formats, but also content with recursive structure such as some
vector graphics formats.

• Two-dimensional. Representatives of this class are largely images.

• Three-dimensional. Includes videos and 3D models. This class often causes some presen-
tational difficulties as current systems mostly use two-dimensional displays.

Different types of addressing can be identified which are largely orthogonal to the content
dimensionality:

• Relative or absolute intervals of the dimensions of the content (e.g., for size of images or
the length audio/video) with respect to some defined origin depending on the content.

• Content-based or structure-based addressing of content parts. The former uses the content
itself to address a part, the latter works on the structure of the content without taking
the characteristics of a particular instance into account. An example for content-based
addressing is the selection of all areas of a certain color/texture in an image. Selection of
nodes from a semi-structured document can rely on structure by selecting the nth node
on the kth level.

3XML: The eXtensible Markup Language [BPSM+06] is a family of languages that share a similar syntax.
This facilitates the creation of parsers and other tools to deal with documents in the language.

4XHTML: eXtensible HyperText Markup Language, also a W3C standard [W3C02]. XHTML is an XML
language.



3.2 CONTENT COMPONENTS 55

Selector Type Description

<time, 15s, 90s> 3-dimensional,
absolute,
structure-based

Selector on a video addressing
the piece from second 15 to
second 90 (could also be used
for other time-dependent
content)

<xpath,
”/book/authors[@id=’p15-8’]
/text()”>

tree,
relative & absolute,
structure & content

Selector over XML content
using an XPath expression
which addresses a particular
document node from the
content

<coords-rel, (0, 0), (0.5, 0.5)> 2-dimensional,
relative,
structure-based

Selects the upper left quadrant
of an image by relative
addressing

<xpath,
”//img[@src=’group.gif’]>
<coords-abs, (143,201),
(255,432)>

chained selector First selector retrieves an image
from an XHTML document,
the second addresses a part of
this image in absolute
coordinates.

Table 3.1: Examples of selectors

These types of addressings can often be combined as shown in the example of the XML selector
in table 3.1.

The expression ecomp in section 3.2.1 uses a selector which is 2-dimensional, relative, and
structure-based: <coords-rel, (0.1,0.2), (0.3,0.9)>. coords-rel specifies that relative coordinates
are being used to address the piece of content. By the kind of content which the component
is created in (two-dimensional image), it is understood that top-left and lower-right corner are
given.

Table 3.1 shows some further examples of selectors. The first (<time, 15s, 90s>) can be
used for time-based content, such as various kinds of audio or video. It simply gives a time
interval. The second (<xpath, ”/book/authors[@id=’p15-8’]/text()”>) is meant for use with
XML documents as content. The selector first indicates that the addressing information will
be given as an XPath5 selection expression. The subsequent expression then selects a node
from the XML document (presumably a string giving the name of a certain author of the book)
by making some assumptions about the structure of this document. A complete expression
illustrating the use of this selector is given in figure 3.6 as well as in figure 3.3(b) in visual
notation.

The representation might show the “actual” structure (e.g., the source of an XML docu-
ment) or some—possible more user friendly—rendering (e.g., an interpreted HTML document).
Addressing can—in principle—be done on both the actual structure and the visualized ren-
dering. An extreme case of visualization-based addressing is the use of pixel coordinates to
address parts of (rendered) HTML pages. However, addressing has to take into account po-
tential transformations of the address.

Plain Text

Structurally, plain text does not offer many addressing possibilities. The simplest form is
character intervals. However, intervals can also be formed at higher levels for words or even
sentences. Plain text can additionally contain line breaks, which can also be used for selectors.

5XPath [W3C99] is a navigation language for XML documents. It supports the selection of any node in the
document tree.



56 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Figure 3.6: Abstraction over a component in XML content.

Kind Addressing information Comment

interval-character two character counts begin
and end

Selects all characters from begin to
end (inclusive)

interval-word two word counts Selects whole words (inclusive),
words separated by whitespace

interval-sentence two sentence counts Selects whole sentences (inclusive),
sentences separatred by full stops

line-character two pairs of (line number,
character count)

Selects from the character given
with the first line to the character
given with the second line

line-word two pairs (line number, word
count)

Selects from the word given with the
first line to the word given with the
second line

Table 3.2: Selector kinds for plain texts. A selector kind line-sentence does not seem relevant
because there would be two competing addresses of similar granularity as sentences usually span
several lines.

Table 3.2 shows some selectors for plain text based on these addressing modes. Additionally,
one might define selectors based on information retrieval technologies to select text based on
its meaning rather than on its position.

Thus a selector for plain text might be

<line-word, (10, 3), (15, 8)>

which selects all text from word 3 in line 10 to word 8 in line 15.

Structured Documents

Contrary to plain text, structured documents have a much richer substructure (hence their
name). This structure can be exploited to select parts of the document. Generally speaking,
most kinds of structured documents are accompanied by at least one query language (e.g.,
XPath for XML documents or extended O2SQL [CR94] for SGML documents). These query
languages can be used as addressing information in the selectors for the respective documents.
Figure 3.6 gives an example of this approach applied to an XML document for which a selector
is defined using XPath.

Other means of addressing are also possible. For HTML a combination of URL, document
hash code, and XPath expression can be computed and used to identify elements [NSS01].



3.2 CONTENT COMPONENTS 57

Kind Addressing information Applicable to

coords-rel two points with coordinates
from [0..1]

All images, address relative to total
image dimensions

coords-abs two points with absolute co-
ordinates (i.e., values > 1)

Images which can uniformly be de-
composed into discret parts along
each dimensions: bitmaps

Table 3.3: Selector kinds for images. Not all selectors are applicable to all kinds of images.

Kind Addressing information Applicable to

time-sec a time interval [start ,finish] all audio
speech-text a string of text to be found in

the speech
spoken content or lyrics

music-timbre an instrument music
music-meter the meter music with discernable meter
music-key the key harmonic music
music-
melodycontour

a series of pitches music with distinguishable
single melody

Table 3.4: Selector kinds for audio.

HTML might also be addressed based on a document object model, as is in practical use in
the Javascript language.

Images

The term “image” is used here to refer to multimedial content which is represented graphically
in two spatial dimensions. This includes the usual notions of image such as photographs,
illustrations, or graphs. A photograph of a page of text would also be treated as an image.
Based on the two dimensions, parts in all images can be addressed by giving intervals for each
dimension. The first selector of type coords-rel in table 3.3 uses this.

Additionally, an image might offer further possibilities depending on its type:

• Bitmaps can be addressed in absolute coordinates as they decompose into discreet samples
(pixels) along each dimension.

• Vector images are composed of discreet objects, but these are not distributed uniformly
along the dimensions. The objects are also more complicated than pixels as they can be
of several types and have attributes besides their color.

An example of a vector-based image format is SVG6, which is in fact an XML dialect.
Therefore, the same selectors as for XML can be used.

Other vector formats are not necessarily tree-based and therefore require other selectors.

Audio

Using MPEG-7, audio content can be captured at different levels of abstraction [KM05]. First
of all, low-level descriptors (LLDs) are applicable to all types of audio content. They describe
the audio in the time or frequency domains. In principle, intervals from both can be used to
define content components. However, it is usually rather difficult to attach semantics to the
part of audio that is described in a certain subset of the frequency spectrum. Therefore, of the

6SVG: Scalable Vector Graphics [W3C05a] is a description format for two-dimensional graphics composed
of complex entities such as circles, lines, and boxes.



58 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Feature Video Segment Still Region Moving Region Audio Sgmt.

Time x x x
Shape x x
Color x x x
Texture x
Motion x x
Camera Motion x
Audio features x x

Table 3.5: Spatio-temporal description features in MPEG-7 for addressing audio-visual con-
tent [Mar02a].

LLDs offered in MPEG-7 the ones in the time domain are most useful for the present purposes
as any audio described by using them can accommodate components with time-based selectors.
Regardless of its technical format, all audio must be transformed to the time domain before
it can be played. Time-based selectors are therefore applicable to all audio. Table 3.4 lists
selectors on audio.

On top of the LLDs, MPEG-7 provides specialized descriptors for spoken content and for
music. Both have particular characteristics that can be exploited for a higher-level description
and also for component creation. The descriptors for speech are based on a series of phonems,
i.e., the “atomic” sounds found in spoken language. Groups of these phonems are arranged into
words which describe the spoken content. Both phonems and words come from a lexicon. Words
are more interesting for content components than phonems because the expression creators are
familiar with them and it is also easier to attach meaning to them.

Music can be described by means of some typical properties. Music is played on a variety
of instruments each of which has its own characteristic timbre. MPEG-7 describes the timbres
in quantifyable terms, but more intuitive summaries that correspond to real-world instruments
are available [Int01]. Melodies are described with the usual musical terms of meter and key
along with a symbolic representation of the approximate melody itself. MPEG-7 refers to the
latter as melody contour. A precise representation of the melody in MPEG-7 is made as a
melody sequence which is a sequence of actual notes.

Video

Components in video content can be addressed with existing selectors. Just as in still im-
ages, one can, for example, select a spatial region from a video. However, this region usually
does not have uniform semantics over the whole playing time of the video. Therefore, video
selectors should also be time-dependent. This approach is taken in MPEG-7 which defines
three-dimensional segments in video that move over time. An illustration can be found in the
usual soccer example [Mar02a]. To distinguish still and moving regions, MPEG-7 provides two
models for motion: camera and object motion. Table 3.5 lists some of the spatio-temporal fea-
tures available in MPEG-7 (left column) and their applicability of different kinds of segments
in video.

Heterogenous Content

Individual selectors are defined for a single kind of content. However, heterogenous content,
i.e., content which is composed of different kinds of content, is rather common in real-world
systems, examples include HTML or PDF7 documents as well as the multimedia synchroniza-

7PDF: Portable Document Format [Ado04]. PDF combines graphics and text into a single file to enhance
portability.



3.3 TYPED ASSET EXPRESSIONS 59

(a) Example of heterogenous content [Bra95]

<xpath, ”//img[@src=’group.gif’]> <coords-abs, (143,201), (255,432)>
(b) Selector

Figure 3.7: Parts of heterogenous content can be selected by chaining multiple selectors. The
first selector addresses the image as a whole, the second a part of the image.

tion language SMIL8. To allow the use of heterogenous content, selectors can be chained by
giving a number of selectors where a selector is expected, e.g. (for some heterogenous content
C):

(((child)n)<. . . , . . .><. . . , . . .>)C

The first selector is interpreted with respect to the whole content, each subsequent selector
with respect to the part addressed by the previous one. Note that the above invocation of child
still creates only one component.

As an example, consider an HTML page which contains a bitmap image, such as the one
shown in figure 3.7(a). The creator of an Asset Expression for the HTML document would
like to provide an abstraction for a part of this image. The appropriate selector can then be
composed of two primitive ones: First, a selector for HTML documents is used (employing
XPath to select the image as a whole). This selector is then chained with a selector for images,
selecting the region from the image as usual (e.g., by absolute coordinates):

<xpath, ”//img[@src=’group.gif’]”><coords-abs, (143,201), (255,432)>

3.3 Typed Asset Expressions

This section introduces typing to Asset Expressions in a type system called AE→. The types
used are semantic types that are motivated by the application domain. They are not defined
intensionally, i.e., have no defined substructure. Semantic types can either be simple types,
which are embedded in a type hierarchy, a list type derived from a simple type, or function
types, which are constructed from two semantic types by means of the → type constructor.

8SMIL: Synchronized Multimedia Integration Language [W3C05b]. SMIL can be used to combine and
synchronize a wide variety of multimedial contents into a single presentation which is combined at the player.
Generally, this final presentation could simply be considered to be a two-dimensional, time-dependent video.
However, this would discard much structuring information which is already available in the SMIL definitions.



60 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Figure 3.8: Asset Expressions can vary along two dimensions: The amount of abstractions
(i.e., the level of detail of the explanations) and the specificity of the overall semantic type.
Both dimensions are independent: An expression of very general semantic type can still exhibit
a high level of explanations and vice versa.

3.3.1 Semantic Types

Content represents a real-world entity in Asset Expressions. The content is interpreted by
users and the result of the interpretation is this entity. Semantic types serve to capture the
type of the entity that is described by an expression. Each semantic type has a name which is
composed of a namespace and a local name that is valid within this namespace. The namespace
is part of the name to separate different application domains. For brevity, it is assumed that
there always is a default namespace corresponding to the current application domain.

It should be noted that semantic types are not technical in nature, e.g., “JPEG-Image”
will generally not be a semantic type. Rather, the type of a content is the type of what it
represents. As an example, an image of a student could be typed with the semantic type Person.
The technical type is motivated by the content representation and is of concern to system
implementations only. The technical types of content are also of interest when transforming
Asset Expressions for use in other systems, see section 6.2.

Content and abstraction variables are assigned types by the user. The same content can
have varying semantic type if used in several Asset Expressions. This mirrors the freedom
of the users to explain the same content in different ways to form expressions which denote
separate entities. This aspect of semantic types is portrayed in more detail in section 4.6.1.

In Asset Expressions all literals, e.g., 1967 as a year or ”Peter” as a string, are considered
to be content just like images or videos. Consequently, these “literals” are typed in semantic
types, which are assigned by users according to their meaning. The same representation, e.g.,
1967 can be interpreted as a Year or a NaturalNumber depending on the context it is seen in.

Semantic types are structured in a taxonomy of types which is defined by the user. Each
semantic type—except for the built-in one Any—has exactly one super-type. The restriction to
a single super-type is deliberate though not necessary for any technical reason. Rather, its aim
is to keep the type system simple enough for domain experts—who are usually not Computer
Scientists—to understand.

Semantic types thus are similar to classes in ontologies in that they capture domain concepts
but not implementation issues. However, there are important differences. Classes in ontologies
usually have a structure (this of course depends on the paradigm used to express the ontology)



3.3 TYPED ASSET EXPRESSIONS 61

which defines the class intensionally. By contrast, semantic types do not have such substructure.
Semantic types can be defined extensionally by providing a sufficiently large set of expressions
of this type. Thus, typed Asset Expressions can differ along two dimensions:

1. In structure by their abstractions and

2. in type by being of different semantic type.

This is depicted in figure 3.8 which shows the two independent dimensions. On the left, there
is a small hierarchy of semantic types. For simplicity, the level in this hierarchy is indicative of
the specificity of the semantic type. Likewise, the amount of abstractions indicates the number
of abstractions in an expression, regardless of type and name. Thus, each dot represents in
fact a set of Asset Expressions.

It is possible to predefine explanatory structures coupled with a semantic type. Such struc-
tures called traits (see section 4.1 for more details) can be helpful for recurring situations in
which some user guidance is desired. However, as traits do not constitute an intensional defini-
tion of semantic types, they should be considered a suggested structure to build an expression
for use in particular situations. Intensional definition of semantic types is avoided to obtain
simplicity in the type system and flexibility in modeled entities.

3.3.2 Type Construction

Semantic types can either be simple types, which are defined by the creator of the expressions
and are embedded in the type hierarchy, or function types, which are constructed from two
semantic types by means of the → type constructor. Each type T has a corresponding list type
constructed from this type by ∗ and written T∗. The syntax for types is:

T ::= primitive | T→ T | T∗

Function types can optionally be written in parentheses to enhance readability, i.e., T→T =
(T→T). The typing rules of AE→ follow examples from functional programming languages.
Abstractions are typed in function types to indicate that an explanation is still missing to form
a full description of an entity.

The type T of an Asset Expression e1 is separated from the expression by a colon:

e1: T

In the following, capital letters will be used for arbitrary type names. Other types in
examples will be written with capitalized first letter. All types save the built-in type Any have
a single super-type. This relationship is written as <:, e.g.:

T<:S

Where T is more specific than S (i.e., S is the super-type of T). An expression of a subtype
is substitutable for an expression of a supertype.

3.3.3 Expression Typing

Multimedial content and variables of abstractions are typed explicitly, for example the variable
depicted and the image in the following expression:

e1 := λdepicted: Ruler. : EquestrianStatue

Thus only the syntax of abstraction and content have to be amended with type declarations:



62 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

Figure 3.9: Visual notation for typed Asset Expressions. Extensions are explicit typing of
abstraction variables and content.

λv: Type.e for a variable v and an expression e as well as
C: Type for a content C

All other syntactical elements remain the same. The type declaration “:” binds stronger
than all previously introduced language elements. The visual notation is extended in a sim-
ilar manner by introducing type annotations on abstraction variables and on content. The
extensions are illustrated in figure 3.9 and table 3.6.

The types of expressions can be inferred by rules, which will be discussed in section 3.3.4.
The expression e1 which has an open abstraction is of function type:

e1: Ruler→ EquestrianStatue

An expression e2, which provides an application for the abstraction, is again of simple type:

e2 := (e1)Napoleon e2: EquestrianStatue

Given a previously defined expression Napoleon which is of type Ruler and thus matches
the domain type of the function type. This allows for multiple explanations through pairs of
abstraction and application without modifying the semantic type of the core. Different Asset
Expressions that explain the same content in different ways will thus have the same semantic
type, making them substitutable for each other if all abstractions are filled. Table 3.6 gives
further examples of expressions and their type.

Existing expressions can be lifted explicitly to a more specific type, similarly to type casts
in programming languages. The lifting of expression: S to a type T<:S is written as:

expression ↑ T

By means of a lifting the promise can be made to the type checker that the expression is
actually of a more specific type than was originally modeled. If the type T that is lifted to
is less specific that the original type of the expression, the lifting is ignored. This is feasible
because of substitutability as will be shown in the next section.

All in all, the main goals of the type system are:

• Making it harder to build non-sensical expressions. The contribution of the type system
to this end is to only allow applications if there is a matching abstraction and if the
type of the abstraction variable matches the type of the expression that is to be applied.
Analogous to the above example of expression e2, the expression e′2 applying a common
person would not be well-typed:



3.3 TYPED ASSET EXPRESSIONS 63

Expression Type

Victory

Symbol→ Victory

Photographer→ Symbol→ Victory

Victory
(Assuming Flag<:Symbol)

Table 3.6: Examples of expressions and their type

JoeDoe := . . . : Person

e′2 := (e1)JoeDoe ; error!

Assuming Ruler is not a super-type of Person.

• Capturing the nature of large expressions as a whole. As a consequence of the typing
rules for abstraction and application, the semantic type of an expression does not change
regardless of the number of explanations employed. The overall semantic type also does
not depend on the types of other expressions applied in explanations.

• Relating expressions which describe similar real-world entities. Another benefit of the se-
mantic type’s independence of structure is that expressions which describe similar entities
in the real world are of equal type (or related by sub- or super-type relations).

3.3.4 Typing Rules

S is a set of simple semantic types which are defined by the user. These types, which are
introduced by the user, are used to type content and variables. The semantic types in S can
come from different domains.

A context Γ is constructed, which contains the semantic types of all variables and contents.
The “comma” operator extends the context with a new type assertion. The grammar of the
context is (ǫ is the empty context):

Γ ::= ǫ | Γ, x : T | Γ, C : T for variables x and contents C

The statement Γ ⊢ e: T then means, that the expression e has the type T under the
assumptions Γ. In typing judgements the expression e might be a complex expression, which is
normally not assigned a type in Asset Expressions. Nevertheless, the “colon” operator is used
to note its type. Typing judgements are presented in the form:



64 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

premise1 premise2 . . . premisen

conclusion

The context is used to look up the types of abstraction variables:

x: S ∈ Γ
Γ ⊢ x : S

Asset Expressions are constructed from several pieces of (representations of) content C each
of which is a semantic type S ∈ S.

C : S ∈ Γ
Γ ⊢ C: S S ∈ S

Users can explicitly define subtype relationships between the semantic types. Expressions
of type T are type-wise substitutable for expressions of transitive super-types of T:

Γ ⊢ t : S Γ ⊢ S <: T
Γ ⊢ t : T S,T ∈ S

Abstractions and applications are typed as usual in the λ-calculus. The type assertion in
the conclusion “: (S→T)” refers to the whole expression λx.e and not just the body e. The
expression is written in parenthese to emphasize this, it is not an application.

Abstraction

Γ, x : S ⊢ e : T

Γ ⊢ (λx.e) : (S→T)

Application

Γ ⊢ e : T→S Γ ⊢ f : T

Γ ⊢ (e)f : S

As name definitions evaluate to the expression the name is bound to, they are also of this
type. Again, the expressions in the conclusion are written in parenthese to emphasize the scope
of the typing annotation for the purpose of type inference rules.

Γ ⊢ e : S
Γ ⊢ (x := e) : S

Lists of Asset Expressions are of the list type of the common super type of all contained
expressions:

Γ ⊢ ei : S

Γ ⊢ {e1, . . . , en} : S∗ i ∈ [1, n]

Therefore, there can be several valid types for lists. If a hierarchy of semantic types defines
S <: T <: U and an expression of type T∗ is required, expressions of types S∗ or T∗ will
suffice. This is possible because lists are immutable.

A lifting ↑ can explicitly change the type of an expression to a more specific one. However,
a lifting to a type that is more general than the type of the expression has no effect.

Γ ⊢ e: S Γ ⊢ T <: S
Γ ⊢ (e ↑ T) : T

Γ ⊢ e: S Γ ⊢ S <: T
Γ ⊢ (e ↑ T) : S

As noted previously, the rebinding of names can implicitly change expressions which make
references to this name. If the newly bound expression is an extension or correction of the
previously bound, such a change will not modify the semantics of the referencing expression,
but will merely make the explanations more detailed. If, however, the newly bound expression
is entirely different, the referencing expression can become wrong or meaningless in many ways.
Typed Asset Expressions can remedy this situation by distinguishing two cases of rebinding
based on the type of the new expression:



3.3 TYPED ASSET EXPRESSIONS 65

Variables
x: S ∈ Γ
Γ ⊢ x : S (3.1a)

Content
C : S ∈ Γ

C: S S ∈ S (3.1b)

Substitutability
Γ ⊢ t : S S <: T

Γ ⊢ t : T S,T ∈ S (3.1c)

Abstraction

Γ, x : S ⊢ e : T

Γ ⊢ (λx.e) : (S→T) (3.1d)

Application

Γ ⊢ e : T→S Γ ⊢ f : T

Γ ⊢ (e)f : S (3.1e)

Naming expressions
Γ ⊢ e : S

Γ ⊢ (x := e) : S (3.1f)

Lists

Γ ⊢ ei : S

Γ ⊢ {e1, . . . , en} : S∗ i ∈ [1, n],S ∈ S (3.1g)

Lifting
Γ ⊢ e: S T <: S
Γ ⊢ (e ↑ T) : T

Γ ⊢ e: S S <: T
Γ ⊢ (e ↑ T) : S S,T ∈ S (3.1h)

Figure 3.10: Semantic typing of Asset Expressions

1. If the newly bound expression is of the same or a substitutable type, binding remains a
one-step operation and is always allowed.

2. If the newly bound expression is of a different, non-substitutable type, binding becomes
a two-step operation composed of an unbinding of the name and a subsequent binding
with the new expression. Note that the unbinding is only possible if the name is not
referenced anywhere.

The effect of these rules is that rebindings of names which have dependent expressions can only
be carried out if the new expression is of compatible type. This can still modify the semantics
of the dependent expressions, but the equality of expressions cannot be determined beyond
their type (also see section 4.4).

3.3.5 Rationale of This Type System

The content in Asset Expressions is interpreted by the user in the context of the supplied
explanations and the user’s contextual knowledge. This interpretation results in a real-world
entity, not in its medial representation. The return type of functions, which provide such
explanations, is therefore a semantic type. The formal parameters are whatever the creator of
the expression chose them to be.

At a syntactic level AE→ needs to achieve closedness under composition. If one thinks of
content as a function, the results of function applications can again be used as parameters in
new applications. Specifically, it is necessary that one is able to use existing expressions to
supply explanations in new expressions. This can be achieved by proper typing of abstraction
variables to allow expressions of the right kind to be applied.

At a semantic level, one observes that the way a real-world entity is explained does not
change its nature, thus the type should be the same. This has two consequences: (1) the
abstractions and applications used to explain the entity must not manifest themselves in the
type of the overall expression, and (2) several explanations of a consistent view on the same
entity have the same type. The first seems suprising initially as many modeling approaches



66 CHAPTER 3: CORE ASSET EXPRESSION LANGUAGE

handle this differently. Take object-oriented modeling as an example, where the details of the
explanation (i.e., the object’s attributes) are part of the class. However, such elision makes
sense if one considers one’s own mental model of such a type: Once one has understood a
certain entity, the particular explanation that led to this understanding might well vanish.

Just as with functions, one cannot draw conclusions from the formal parameters of the
function to the nature of the function as a whole or its (semantic) return type. A function with
parameters int × int is not necessarily an addition and might have any return type. Similarly,
the types used in explanations cannot be mapped onto a semantic type for the whole expression.
This is revised in section 7.1.

The second requirement is reasonable as composition of expressions is highly desired. It is
fulfilled by the typing rules for application and abstraction which allow the semantic type of
an expression not to change with additional explanations.

Each variable of an abstraction is assigned a semantic type. It restricts the expressions,
which can be applied to fill this abstraction, as the expressions must be of a substitutable
semantic type. This use of semantic types can also be found in hypermedia systems [BVA+97],
where such types are used to restrict the kind of document a link can point to.

Just as with ordinary functions, the semantic type of Asset Expressions depends on the
type of the function’s body (often content) if all abstractions have full applications. If this
is not the case, the total expression is of a function type. This is desirable when composing
expressions as an only partially explained expression is hardly fit for use in further explanations.
The function type then prevents its use in places where a simple type (i.e., an expression with
complete explanations) is required for the explanation.

3.3.6 Typing Example

Consider the following typed Asset Expressions as an example:

Napoleon := : Emperor

e1,typed := (λequestrian: Ruler. : EquestrianStatue )Napoleon

Two semantic types are used: Ruler and EquestrianStatue. They are part of the type
hierarchy and might have been specified by the creator of this expression. Alternatively, they
could be imported. However, as they are in the default namespace, they are part of the current
application domain.

Using the type inference rules shown in figure 3.10, the well-typedness of e1,typed can be
established.

⊢ : EquestrianStatue

⊢ λequestrian: Ruler. : Ruler→EquestrianStatue

⊢ Napoleon: Emperor

⊢ Napoleon: Ruler

⊢ (λequestrian : Ruler. : EquestrianStatue)Napoleon: Emperor



Chapter 4

Extended Asset Expression

Language

Asset Expressions provide a high degree of freedom to model real-world entities, examples of
this can be found towards the end of this chapter and in chapter 8. Creators of expressions can
describe these entities in any way that suits them. In particular, the semantic type assigned
and the abstractions used are totally independent.

4.1 Traits for Asset Expressions

Total independence of explanations and semantic types is certainly desirable in general to allow
for expressions of personal opinion (also see section 4.6.2 on openness and dynamics). Under
some circumstances—for example when an application domain has been understood to a high
degree—such complete freedom may not be necessary any longer.

To introduce a dependency between the level of abstraction and specificity of semantic
types, i.e., to only allow a certain area in figure 3.8 to be reached, traits can be used. Traits
for Asset Expressions serve as expression templates which prescribe a number of abstractions
(possibly none) and a semantic type.1 A trait for Asset Expressions is defined as follows:

trait name [refines super-trait] of semantic-type with abstractions

Traits have a name and define a semantic type and a set of abstractions. Traits can have
a super-trait whose abstractions are inherited to the sub-trait. The additional abstractions
specified with the sub-trait are added to those specified with the super-trait. Expressions
created through a trait have the semantic type specified in the trait’s definition. If the super-
trait is EmptyTrait, the super-trait declaration may be omitted. EmptyTrait is a built-in trait
that defines no abstraction and the semantic type Any. Expressions are created based on traits
as follows:

create trait expression

Which creates a new expression based on expression by adding the abstractions provided in
the trait. expression is also lifted (see section 3.3.4 on lifting) such that the complete expression
is of the semantic type prescribed in the trait.

In the domain of art history it might be sensible to define a trait painting:

1The term “trait” is borrowed from object-orientation (see, e.g., [AC96, pp 47, 73]) where traits contain
methods and serve as prototypes for concrete objects.

67



68 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

Figure 4.1: Traits prescribe a number of abstractions and a certain semantic type. By creating
a new expression from a trait (instead of from scratch) not all areas in the abstraction-semantic
type plane are reachable anymore, compare to figure 3.8 where no such restrictions are in place.

trait painting refines EmptyTrait of WorkOfArt with λpainter: Artist.λpaintedIn: Epoch

Thus requiring that any expression created through this trait will be a WorkOfArt and have
at least abstractions typed as Artist and Epoch. A particular painting can then be created by:

create painting =λpainter: Artist.λpaintedIn: Epoch. : WorkOfArt

The expression created by means of the trait has open abstractions (as defined in the trait),
which can now be met by corresponding applications. These applications are not part of the
trait because they would only be useful to create a single expression. An expression created
via a trait is equivalent to its manually created counterpart, thus applications are made with
the same syntax:

David := . . .

eSB := (create painting )David

Resulting in an expression eSB, which has one open abstraction:

eSB = (λpainter: Artist.λpaintedIn: Epoch. )David

Several traits can be used together for the creation of an expression. The resulting expres-
sion has all abstractions prescribed by the traits and is of the most specific semantic type.

trait portrait refines EmptyTrait of WorkOfArt with λdepicted: Person

eextended := (((create portrait create painting )Napoleon)David)Renaissance

Traits restrict the possible configurations (i.e., combinations of abstractions and semantic
type) of expressions by introducing obligations for explanations. While an expression created



4.2 ASSET EXPRESSION QUERY LANGUAGE 69

through a trait can be further abstracted from, any abstractions introduced by the trait cannot
be removed. Similarly, the semantic type can be lifted to a more specific type, but a semantic
type more general than prescribed by the trait is no longer reachable. As shown in figure 4.1, a
trait (dashed arrow) therefore limits possible configurations to the striped area. More detailed
configurations can be reached by modification (as indicated by the solid arrows in the figure)
inside the striped area. The figure also shows a second use of a trait. This second use further
limits the possible configurations to the intersection of the areas.

4.2 Asset Expression Query Language

Asset Expressions can be used to create networks of multimedial content, which serve to de-
scribe entities. A large database of such expressions can serve to describe an application
domain. While some insights might already be gained during the modeling process, users will
generally want to later retrieve their expressions. Named expressions can be retrieved by their
name. However, this is only possible if the name is remembered. Of course, the desired expres-
sion has to have a name in the first place. This will not generally be the case as the purpose or
objective of work can have changed since the expression was created. Thus, at creation time
the expression might not have been deemed interesting enough to be given a name. Instead,
the creator might have chosen to give a name only to a larger expression that includes the
desired one.

To allow for more flexible retrieval of expressions, the Asset Expression Query Language
(AEQL) is introduced. The key features of this language are:

1. It enables users to select any part of an expression. The set of parts of an expression
is the set of all its transitive subexpressions. Thus, not only named expressions can be
retrieved but also any other Asset Expression.

2. The results of all queries are again well-formed Asset Expressions. This is important to
provide flexible recombinability of results to create new expressions.

3. Particular expressions can be selected from a larger body of expressions based on their
values, on their type, as well as on their structure.

4. New Asset Expressions can be built in the language. This is related to feature 2 in that
it can be desirable to construct a new expression around the results of a query.

In general, the second feature is a lesson leant from existing query languages in various
fields of application. In the Structured Query Language SQL [Sta03], for example, the results
of queries are generally relations (just as the inputs), resulting in, e.g., facilitated combinability
of both query results and query language constructs. Conversely, XPath as another example
allows many queries whose results are not proper XML documents. The language also does
not provide the means to transform the results into such documents. This can make the use
of the language considerably more difficult in situations such as view definition [Bos04].

There are several approaches to queries on λ-terms in the literature. When searching for
expressions given some selection criteria, one can generate an exhaustive list of expressions
which match these criteria [Kat05]. Selecting matching expressions from a set then is a trivial
task, one only has to compare for equality. The search criteria and the structure of the ex-
pressions to compare against have to be constructed in a way that ensures that the exhaustive
list of potential candidates is finite. When the domain of the search are, e.g., small functional
programs [Kat05], this is the case. To query different domains, these domains can be expressed
in λ-expressions [HKM93] and a query language can be constructed on these expressions or a
usual query language for the domain can be embedded into the λ-calculus.

The query language presented here takes a more conventional approach. It is a special
purpose language in the sense that its language elements are not λ-terms. Given the complexity



70 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

of the expressions resulting from the embedding in the λ-calculus [HKM93], such an embedding
is not feasible for queries on Asset Expressions where the intent is to provide domain experts
with a suitable query language. Indeed, for some users the AEQL presented below might still
prove too complex.

AEQL is not designed with particular query scenarios in mind. Rather, it is intended as
a general query language for Asset Expressions, onto which more specialized scenarios with
special languages can be mapped. Its design is based on previous experiences with querying,
in particular in the area of semi-structured data [BSG+04, Bos04]. Examples of applications
include the matching of signatures by similarity (see section 7.1) and the creation of conceptual
models based on a body of Asset Expressions (discussed in section 7.2).

The Asset Expression Query Language aims to provide query facilities at Asset Expression
level. In other words, it is neither concerned with querying multimedial content as multi-
media query languages (e.g., [LÖSO97]) nor with information retrieval from medial content
(e.g, [CMF96]). Multimedia query languages allow queries against technical properties of the
content such as the playing time of a video or the dimensions/colors of an image. They do not
address the aspects of interrelation of content instances or the further explanation of particular
parts of a content. In a survey conducted on queries of users against an archive of images,
it was found that the type of query depends on the users’ background and their motivation
to run the query [Kei94]: While more graphically inclined users (e.g., someone working on
illustrational graphics) might ask for images of some object or images in which a certain color
is dominant, other users base their queries on background and contextual information. While
AEQL leaves graphical properties to multimedia query languages, it does address the other
concerns. However, for a particular application domain a specially targeted language can be
more appropriate, just as users of information systems which are based on a relational database
are not expected to write SQL queries.

4.2.1 Navigating Expressions

Asset Expressions can be represented as a tree structure. This representation is central to
AEQL. Each expression has zero (variables, content), one (name definitions), or two (applica-
tion and abstraction) subexpressions. As an example, consider the expression:

e1 := (λx.C)A

Which can be quite conveniently represented as its abstract syntax tree:

Each sub-tree of this tree is again a well-formed Asset Expression by construction, see the
full grammar presented in section 4.7. Thus, each sub-tree (i.e., each sub-expression) might be
of interest to users wishing to construct new expressions or educate themselves about existing
ones. Therefore, AEQL includes means to navigate the tree to a particular expression of
interest. The edges of the tree are labeled according to the nature of the relationship of the
parent and the child as shown in figure 4.2.

A labeled edge is called an axis2. Along an axis one can navigate from parent to child
expression. An axis is applied to its context by a “/”. The context can be a single expression
or a list of expressions. Using the expression e1 from above:

e1/operator = λx.C e1/operand=A

2This is not the same as an axis in XPath even though the syntax is similar.



4.2 ASSET EXPRESSION QUERY LANGUAGE 71

Figure 4.2: Abstract syntax tree representation of the Asset Expression (λx.C)A together with
concrete syntax for every node. The edges are labeled with the relationship of parent and child
to allow navigation in the query language.

For convenience, there is a special context “ ” which is a list of all currently defined expres-
sions.

Navigating the axis yields a list of expressions, which are obtained by navigating the axis
individually for each expression in the context and putting the resulting expression in the result
list. If the axis is not applicable to an expression in the context, nothing is put in the result
for this expression. However, this is not an error.

Axes can be applied repeatedly and in combination by concatenating them, each axis ap-
plication is called a step. The first axis is interpreted in the context given. Its result is used as
context for the second axis and so on.

e1/operator/expression = C

As indicated above, the initial context as well as intermediate contexts (i.e., results of
previous axes) can be lists of Asset Expressions:

e2 := (λy.(λz.C2)A)B

{e1, e2}/operator/variable={x, y}

The available axes are summarized in table 4.1. The first four axes in table 4.1 filter based

Axis Applicable to Matched expression

/variable abstraction, λv.e variable v of an abstraction
/expression abstraction, λv.e expression e over which was abstracted
/operator application, (A)B expression A that is applied
/operand application, (A)B expression B which is applied to
/abstraction all subexpressions that are abstractions
/application all subexpressions that are applications
/content all subexpressions that are content
/parent all parent expression
/* all any kind of expression, useful in combination with

predicates (see section 4.2.2)

Table 4.1: Axes available in AEQL and the corresponding expressions.



72 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

Figure 4.3: The subexpressions included by different paths relative to the topmost application.
The simple path ”/” includes just the direct subexpressions. The main path ”//” includes all
transitive subexpression except those only reachable via the operand of an application for axis
evaluation. The all path ”///” includes all subexpressions.

Path Name Description

/ Simple Only direct subexpressions are included for evaluation.
// Main Transitive subexpressions are included except those which

can only be reached via operands.
/// All All transitive subexpressions are included.

Table 4.2: Paths of AEQL

on the relationship of parent and sub-expression. Another set of axes is available which filters
based on the kind of expression in the context. These axes are /abstraction, /application and
/content which filter for abstractions, applications, and contents, respectively. The /parent
returns the parent expression for each expression in the context. Additionally, there also is
an identity axis which will pass on the entire context. Its purpose will become apparent once
further elements of AEQL have been introduced.

Up to now, an axis is only evaluated against the direct subexpressions. This can be incon-
venient, for example if access to all abstraction variables in an expression is desired. One would
then have to supply the appropriate combination of /operator and /variable axes to pick all
those variables out of the application. The resulting query would heavily rely on the structure
of the expression which was envisioned when the query was created. To facilitate queries that
deal with deeply nested expressions, paths determine against what subexpressions an axis is
evaluated. The already introduced simple path “/” evaluates the corresponding axis against
the direct subexpressions. The main path “//” evaluates against all transitive subexpressions
except for those which are only reachable via an operand of an application. Furthermore, there
is an all path ”///” which includes all subexpressions. The paths are illustrated in figure 4.3.
Table 4.2 lists all path types. Take the expression e3 as an example :

e3 := (λv.C)(λw.C1)A

Evaluating e3//variable results in v but not in w.

4.2.2 Predicates

From a given context, the path of a step puts a certain set of subexpressions into the context.
This context is then filtered depending on the axis. To allow for expression selection by criteria
other than axes, a predicate can be given after the axis in square brackets:



4.2 ASSET EXPRESSION QUERY LANGUAGE 73

/a[predicate]

The predicate is evaluated against the context, which has already been filtered through the
axis. By means of a predicate, abstractions can for example be further filtered for variables:

/abstraction[/variable=x: T]

Where it is required that the variable of the abstraction is x of type T. Equality of variables
is defined as equality of variable name and type. The type can be omitted and is then ignored
in the comparison. Individual predicate expressions can be negated or combined through
conjunction as well as disjunction. The following AEQL expression matches all expressions
that (1) are abstractions over variable x and (2) contain the content C anywhere in the body
of the expression:

/abstraction[/variable=x and ///content=C]

Equality of two contents is defined as the equality of what they “show”, e.g., the pixels of
an image or the words of a text. As in the case of variables, the semantic type of the content
can also be given. Implementations need to handle this correctly for each technical content
type. Besides comparisons, predicates can also be defined on the type of an expression. The
following predicate checks for the type of the variable of an abstraction:

///abstraction[/variable: EquestrianStatue]

Some functions are provided such as match-abs and match-app. The former retrieves the
abstraction matching the application given as argument, the latter works in the opposite di-
rection. They can also be used in predicates. An example of their use will be presented in
section 4.5. For further examples, the expression e4 is defined:

e4 := ((λx.λy.C)(λa.D)E)(λb.F)G

To retrieve all applications containing F:

e4///application[///content=F]={(λb.F)G}

Find all expressions which contain a variable a:

e4///*[///variable=a]=
{ ((λx.λy.C)(λa.D)E)(λb.F)G, (λx.λy.C)(λa.D)E, (λa.D)E, λa.D }

The result contains many expressions which are subexpression of another expression in the
list. When this is not desired, the result can be filtered for such duplications by means of the
function nosubs:

(nosubs)e4///*[///variable=a]={ ((λx.λy.C)(λa.D)E)(λb.F)G}

The full syntax of AEQL can be found in section 4.7.

4.2.3 Creation

New expressions can be created in conjunction with queries using the ordinary syntax for Asset
Expressions. To introduce an additional explanation on an expression retrieved via a query,
one could for example write:

F := . . . G := . . .

e5 := (λartist: Painter. //application[///*=F])G



74 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

This expression retrieves all applications (context “ ”) which contain the expression F . Over
these applications an additional abstraction is created and a matching expression is applied.

It is also possible to use the results of several queries to create new expressions. This can be
interesting to combine existing expressions in new ways, for example to summarize them. First
of all, a new expression can be created for each expression in a list of expressions (resulting in
a new list):

foreach b in ///*[.: Book] return λauthor: Person.b

Resulting in a list of expressions based on the query, but each with an additional abstraction.
foreach variable in list takes a list of expressions and consecutively binds each to the variable.
With this binding the expression given in return expression is evaluated for each binding. The
result is therefore a list with the same number of expressions as in the original list. This list
does not have to be obtained through a query, it could also be given directly or as a reference
to a named expression. Filtering the input list can be achieved by an additional query with a
predicate on this list.

It is possible to introduce additional variable bindings with further uses of foreach. All
variables are then available in the return expression. Thus the return expression now needs to
be evaluated for each element in the cartesian product of the input lists. To attach all persons
as (single) authors to all books, one could write:

foreach b in ///*[.: Book]
foreach a in ///*[.: Person]
return (λauthor: Person.b)a

Making everybody author of every book is usually not desired. Just like query contexts can
be filtered after each step, the cartesian product can also be filtered by a predicate:

foreach b in ///*[.: Book]
foreach a in ///*[.: Person]
where b in a//abstraction [/variable= book ]
return (λauthor: Person.b)a

4.3 Handling Components

Components define parts of a content through selectors. The components of a content are
internal to this content and not directly accessible to Asset Expressions based on the content.
To make the components accessible, dedicated access means are available which define the
connection of the component and the expression based on it. One such means has already been
introduced above (page 52): Using expose components of a content were made available to
abstractions. In this section additional access means are introduced. These means are called
component handling, of which there are three types: the mention handling through expose, the
use handling through hole, and the piece handling through cut.

4.3.1 Mention-Handling

expose makes a named component available in such a way that the part of the content which
is addressed by the component’s selector is subject to the expression built on the component.
When a component is made available to an abstraction using expose, the explanation given by
the abstraction and its associated application talk about the content of the component. Using
a modified version of the above example:



4.4 NORMAL FORM WITH CONTENT 75

(λpresident.((expose)”JD”: Name)(((child)”JD”: Name)<coords, . . .>)

)PresidentOfAtlantis

Creating an expression which talks about the selected component (the person without hat).
The default handling of a component is expose. This means that all abstractions which are
made over the whole of the content (because no component is given) use expose handling.

4.3.2 Use-Handling

Components can also be used to refer to a place in the content. In this scenario, the actual
content at this place is unimportant, the place itself is of interest. Making available a component
through expose mentions the piece of content to the associated explanation. Using hole uses
the piece without regard to what actually is at that location (compare the general discussion
on “use vs. mention” [Gar65]).

((hole)”JD”: Name)(((child)”JD”: Name)<coords, . . .>) =

Components handled by hole are shown with white background in the visual notation.

4.3.3 Piece-Handling

The previous two handlings keep the component in the context of its content. Where this is
not desired, the component can also be removed from its surroundings. This is achieved by the
cut handling.

((cut)”JD”: Name)(((child)”JD”: Name)<coords, . . .>) =

This handling is one of the reasons why selectors are required to select a part of the content
that can be a new content in its own right.

4.4 Normal Form with Content

Expressions in the λ-calculus can be programatically reduced to a normal form. This normal
form plays an important role in determining the semantics of expressions: Two expressions
which reduce to the same normal form are equivalent. The possibilities and issues of applying
a similar approach to Asset Expressions are explored in this section.

4.4.1 Reduction

Reduction in the λ-calculus is essentially an operation which relies on the proper substitution
of the operand of an application into the operator. The reduction ⇒ of an expression (λx.P)Q
is defined as:

(λx.P)Q ⇒ [Q/x]P

Where [Q/x]P is the substitution of Q for all occurrences of x in P. Rules to carry out these
substitutions are defined in section 2.2.1.



76 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

Figure 4.4: Example of use-handling for content construction by reduction. The piece of the
flag in the image is selected using two chained selectors.

Asset Expressions can only be handled by the substitution rules of the λ-calculus in the
special case that the operator in the reduction does not contain content. Not all expressions
can be covered by substitution rules, essentially because—in the case of Asset Expressions—
operand and operator generally can only be evaluated by a human. However, reduction requires
this interpretation to be machine implementable. Whether an application in Asset Expressions
is machine reducible, depends on the component handling used to bind the abstraction to the
component: cut is always reducible, hole is in some cases. The cases that allow reduction in
Asset Expressions are covered in more detail in the next section.

4.4.2 Substitution

Whether a substitution [Q/x]P, is possible depends on the expressions P and Q but can also
depend on the component handling which is used for the component x. Programmatic substi-
tution is possible in some cases:

1. Expressions that are plain λ-calculus expressions. These are expressions that do not use
content at all or that do not perform any abstractions over content. Examples are:

λa: T1.(λx: T2.x)a, (λa: T1.a)

Substitution can be performed with the normal means of the λ-calculus. Content without
abstractions (as shown in the second expression) is treated like a literal value in the λ-
calculus. However, not using any content is not a very common case for Asset Expressions.

2. Use-handling is employed for the affected component. Two different cases of this are
illustrated in figure 4.4. By use-handling the abstraction refers to the place in the content
which is addressed by the selector of the component.



4.4 NORMAL FORM WITH CONTENT 77

operand
image text audio video

op
er

at
or image x x

text x
audio (x) x
video x x (x) x

Table 4.3: Compatibility of substitution of content kinds into each other, which determines
whether an application to a component handled by hole will be reducible. Text into audio
requires non-trivial conversions. Audio into video is only possible if the component is selected
appropriately (i.e., a time interval).

If a plain content Q is applied to this abstraction (as shown in the example of the
λauthor: Photographer abstraction in the figure), i.e., the substituted expression is a plain
content, the substitution can be carried out. The applied content can be substituted
into the content that is abstracted over, provided it is of the same kind. In this case the
substitution is simply

(λx.P)Q ⇒ [Q/x]P

regardless of the structure of P. The square brackets are not used as an abbreviation for
expose in this section but for substitution as in section 2.2.1. Some scaling operations
might be necessary. If the content is not of the same kind, conversions are possible for
some types of content. Table 4.3 shows an overview. Substituting text into audio and
audio into video requires major conversion efforts in the case of text and a selector with
appropriate addressing (a sufficient span of time) in the case of audio.

If Q has further explanations (as is the case with λphoto: Thing in figure 4.4), these are
handled by chaining selectors. Q and P then take the forms

Q=. . . (((child)n1)s1). . . (((child)nN )sN ). . .CQ. . .

P=((hole)nP )(((child)nP )sP )CP

With CQ and CP some Asset Expressions. Additional components are introduced in
the content of P. Their selectors are obtained by chaining the selector of the original
component x in Q with the selector of the component of Q:

[Q/x]P=. . . (((child)n1)sP s1). . . (((child)nN )sP sN )[Q/x]CP . . .

The component handling and the abstractions are carried over from P. If reduction is
carried out in normal order3, reductions might be possible for the new components with
chained selectors. The restrictions of content kinds as in the simple case also apply here.

3. If piece-handling is used, the part of the content addressed by the selector of the com-
ponent is removed from its surrounding content. The result of this operation is not
necessarily just a plain piece of content because abstractions over this component or any
of its children remain in place. Abstractions over other parts of the content outside the
handled component are not part of the resulting expression.

3In normal order reduction the leftmost application, i.e., the first redex, is reduced first [Rev88].



78 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

4.5 Content Construction

It is common for information systems to not just store entities, but to support the creation of
new entities by recombination of existing ones as well. Means to interrelate Asset Expressions
by creating new ones from the parts of existing expressions are required to provide this func-
tionality. In section 4.2 the query language AEQL was presented, which offers means to select
parts of expressions based on various aspects of these expressions and constructors to create
new expressions from these selected parts. As Asset Expressions aim to provide an integrated
representation of multimedial content and its conceptual description, such construction must
also be possible for content. In fact, as all means to do so are already in place, it is the purpose
of this section to given an overview of how to employ them for content construction.

Consider the scenario of figure 4.4, where the goal is to produce a tableaux for each pho-
tograph in the system that shows the photograph together with its author. The figure shows
one example of this. The first step is the construction of a template with components for the
photographer and the photograph. These components are made available to abstractions by
use-handling. The template is used for each photograph. The photograph is applied to the
template and the photographer is retrieved by following the application on the photograph
which matches the abstraction for the photographer.

Template := λphoto: Thing.((hole)”person”)(((child)”person”)<coords-rel, ...>)
λauthor: Photographer.((hole)”photo”)(((child)”photo”)<coords-rel, ...>)C

foreach p in (nosubs) ///*: Photograph
return ((Template)

p)(match-app)p//abstraction[./variable: Photographer]/operand

C is a canvas, such as an empty bitmap, onto which the two contents are layed out. This
application of Asset Expressions can be used to aggregate superimposed information [DM99].
The superimposed information approach works by collecting information from several docu-
ments (which could be modeled in several Asset Expressions) and aggregating this information
in a new, usually more concise, view.

In the same domain a different example might be concerned with the enrichment of de-
scriptions. Consider the following scenario: Photographs are explained with the name of their
photographer as a simple string, but richer models of persons are available which include the
name. Expressions for the photographs shall be provided to an audience for whom the name of
the photographer does not suffice but a more elaborate model is required. The photographer
is therefore added with an additional λauthor abstraction to the photograph:

foreach g in //*[.: Photograph]
foreach p in //*[.: Person]
where p//application[./operator/abstraction/variable=photographer]

/operand=a/application[./abstraction/variable=name]
return (λauthor: Photographer.g)a

4.6 Notes on the Use of Asset Expressions

When creating Asset Expressions to model real-world entities, the question when to model an
entity as a named expression of its own and when to include it in the description of another
entity often arises. This question, which is essentially about the point of focus of the application
domain, also occurs in conceptual modeling in general [BMS84, BJJW97]. Because Asset
Expressions are not constrained by a general schema, the question needs to be answered by
the users based on their experience on a per-instance basis. Some arguments to consider when
evaluating the separation of an entity include:



4.6 NOTES ON THE USE OF ASSET EXPRESSIONS 79

Figure 4.5: Example of a large Asset Expression network which explains substantial parts of
the context of its content.

• Domain semantics. Entities that take an active role in the application domain or that
serve to interconnect other entities are good candidates for modeling in dedicated expres-
sions.

• Reuse. If the entity is needed more than once in the same form, the expression to model
this can be reused. However, if the same entity reoccurs but is required in different forms
(i.e., with different sets of explanations) this is not necessarily a case of reuse for Asset
Expressions.

Reuse will often be caused by domain semantics, but even if domain semantics suggest reuse,
the necessity of diverse explanations will sometimes undo the benefits. However, in cases of



80 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

Figure 4.6: Example of typing with semantic types from multiple domains.

diverse explanations a common kernel can sometimes be found in all expressions modeling one
entity. This kernel can then be pulled out and modeled in an expression of its own. It connects
the related expressions.

A similar issue was already encountered in Hypertext systems when dividing a document
into chunks [TW86]. A too small chunk size (corresponding to very many independent Asset
Expressions) causes fragmentation of the domain and makes organization difficult. A too large
chunk size often prevents users from expressing a single idea in this chunk.

4.6.1 Multiple Domains

Most pieces of content can be interpreted in different application domains. A common example
of two such domains are (1) the domain of the creation of (or work on) the content and (2)
the domain of its statement or meaning. The first domain might be concerned with painting
techniques, canvases, or brushes in the case of a painting. The second might deal with religion
or political iconography depending on the message of the actual painting. As the content is a
representation of a single real-world entity, this representation is of relevance to both domains
and should be explained appropriately in each. In the work domain the content might be
typed as OilPainting, while in the political iconography it might be necessary to type it as an
EquestrianStatue.

Unfortunately, each expression must have one single type which is from a single-inheritance
hierarchy. It would clearly be incorrect to make OilPainting a subtype of EquestrianStatue or
vice versa as this is wrong in both application domains. A solution to this dilemma is shown
in figure 4.6. The same content is typed with different semantic types in two expressions for
each domain. Such multi-domain typing is possible because the same content can be used
independently in different expressions. The types T1, T2, T3 and types T10, T11, T12 are from
two separate domains. Multi-domain typing makes a simple, single-inheritance hierarchy of
semantic types feasible.

Another approach to the combination of different application domains is the blending of
concepts [Gog04]. Blending forms a conceptual mapping from a general space to a blend space
(the combined meaning) by a conceptual integration of two concepts. This happens via two
integration spaces, one for each concept. Clearly, two concepts can be combined in a wide vari-
ety of ways. This is illustrated by the common example of “house” and “boat” combined into
“houseboat”, “boathouse”, “amphibious vehicle”, or many other concepts [GH04]. Blending
however requires a degree of formality of the definitions of concepts that would hurt the ease
of use of semantic types.



4.7 GRAMMAR 81

4.6.2 Openness and Dynamics

As already discussed in section 2.1.4, open and dynamic systems are highly desirable as they
enable the systematic support of application domains that are too diverse for static informa-
tion systems. Openness refers to the way entities are modeled. Under openness users are not
restricted to describe entities in a predefined way, but can choose how to most adequately
describe the case at hand, hence the model is open. Important application areas of open
modeling paradigms are the social sciences, which—due to their inherent subjectivity—cannot
work with static descriptions [SBS05], or emerging application domains, which are not yet
fully understood and therefore cannot be modeled a priori. To realize the benefits of open-
ness, the supporting system must be dynamic (also see section 2.1.4) in the sense that it can
autonomously react to its users’ wishes.

Asset Expression are well suited for open modeling of entities. Not only can each expression
take the most appropriate explanation path, existing expressions can also be easily extended to
augment the explanations to suit particular needs (e.g., those of a new target audience). This
section illustrates some use cases of open modeling by Asset Expressions. The next chapter
deals with computer systems to support such models.

Building on existing Asset Expressions, expression creators can construct further expres-
sions. Motivations for this are manifold and determine the style of such additions:

• Expression of a personal point of view. By adding an abstraction and binding it with
another expression information can be added to emphasize a personal point of view on
the described entity.

• Identification of further explanation needs. The descriptions given in an expression can be
insufficient for some users to understand the content. However, these users are often able
to point out which part of the content it is that requires additional information. They can
record this need for information by adding an abstraction with an appropriate selector
to the expression. However, these abstractions are left open without a corresponding
application. An expression containing such open abstractions is called an incomplete
description.

• Providing further explanations to identified needs. Experts in the application field, who
have sufficient understanding of the content, can then fill the explanation needs expressed
in open abstractions by providing applications of further expressoins.

In the last two cases what is called a partially applied expression emerges. Unlike, e.g.,
record- or object-based description mechanisms, the descriptions in Asset Expressions do not
have to be captured in one step. Instead, they can be incrementally constructed.

4.7 Grammar

Following is the grammar of the Asset Expression Query Language (AEQL), a subset of which
(defined by constructor) is the language used to construct Asset Expressions. The grammar
is given in Extended Backus Naur Form (EBNF). The syntax used here is that of the World
Wide Web Consortium4. The syntax is plain text, which means that content cannot be included
directly. Instead the content constructor relies on URLs to specify its content representation.

Expressions can be given directly as constructors of variables, applications, abstractions, or
content:

constructor ::= abstraction | content | parenexp | selector

variable ::= qualifiedname lift?

4see http://www.w3.org/TR/REC-xml/#sec-notation



82 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE

abstraction ::= lambda variable ”:” typename ”.” expression

parenexpr ::= ”(” (builtin | expression) ”)” (expression | lift)?

content ::= ”@”url”@” ”:” typename

selector ::= ”<” name ”,” address ”>”

address ::= (∼”>”)*

lift ::= ”ˆ ” typename

builtin ::= ”child” | ”expose” | ”hole” | ”cut” | ”match-app” | ”match-abs” | ”nosubs”

Lifting is treated specially for simple variables to allow their lifting without having to
enclose them in parentheses. The rule builtin is not strictly necessary as references to these
names can be met by supplying appropriate expressions in a library of default expressions.
The constructor rule covers typed Asset Expressions as described in chapter 3. The query
language AEQL also includes constructors but adds the language parts for query tasks such as
navigation and filtering. Systems in which users work graphically with a visual representation
can generate this text syntax while still allowing their users to view the content in place.

expression ::= varquery | abstraction | content | parenexp | selector | traitcreate

traitcreate ::= ”create” name ” ” expression

traitdef ::= ”trait ” name (” refines ” name)? ” of ” typename ” with ” absprefix+

absprefix ::= lambda variable ”:” typename ”.”

varquery ::= (variable | ” ”) (pathexpression | ”:=” expression)

The varquery rule is somewhat too lax, it allows assignments to the default query context.
This needs to be resolved in a semantic anlysis. This is also the case for the parenexpr rule.

At the first level, query expressions and variable construction are treated together as vari-
ables can serve as context for queries. Path expressions filter the set from the context. A path
expression is composed of—possibly multiple—steps, each of which has a path and an axis,
potentially also a predicate:

pathexpression ::= (pathstep)+

pathstep ::= path axis (predicate)?

axis ::= ”*” | ”abstraction” | ”application” | ”variable” | ”expressions” | ”operand”
| ”operator” | ”parent”

path ::= simplepath | mainpath | allpath

simplepath ::= ”/”

mainpath ::= ”//”

allpath ::= ”///”

Predicates are expressed as follows:

predicate ::= ”[” orExpr ”]”

orExpr ::= andExpr (”or” andExpr)?

andExpr ::= typeExpr (”and” typeExpr)?

typeExpr ::= comparisonExpr (”:” typename)?

comparisonExpr ::= endExpr (comparator endExpr)?

endExpr ::= (varquery | self | ”(” orExpr ”)”)

Type names are qualified names. A qualified name can be given in three ways: as a fully
qualified name consisting of complete namespace and a local name, as an abbreviated fully



4.7 GRAMMAR 83

qualified name consisting of a namespace prefix and a local name, and as a local name that is
valid with respect to the current namespace.

typename ::= qualifiedname

qualifiedname ::= (”<” name ”>” name | name ”#” name | name)

self ::= ”.”

Finally, the structures of names and URLs as used above are defined:

digit ::= ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9” | ”0”

letter ::= ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g” | ”h” | ”i” | ”j” | ”k” | ”l” | ”m” | ”n” | ”o”
| ”p” | ”q” | ”r” | ”s” | ”t” | ”u” | ”v” | ”w” | ”x” | ”y” | ”z” | ”A” | ”B” | ”C” | ”D”
| ”E” | ”F” | ”G” | ”H” | ”I” | ”J” | ”K” | ”L” | ”M” | ”N” | ”O” | ”P” | ”Q” | ”R” |
”S” | ”T” | ”U” | ”V” | ”W” | ”X” | ”Y” | ”Z”

urlChar ::= letter | digit | ”-” | ” ” | ”.” | ” ” | ”!” | ”*” | ”’” | ”(” | ”)” | ”;” | ”:” | ”” |
”&” | ”=” | ”+” | ”$” | ”,” | ”/” | ”?” | ”%” | ”#” | ”[” | ”]”

name ::= letter+

url ::= name ”://” urlChar+

comparator ::= ”=” | ”in”

lambda ::= ”$”



84 CHAPTER 4: EXTENDED ASSET EXPRESSION LANGUAGE



Chapter 5

Systems for Asset Expression

Support

Experience has shown that work on large amounts of content has always benefitted from system
support [GST00, CKM02]. This is also true for work with Asset Expressions. In fact, besides
just managing plain content, systems supporting Asset Expressions need to offer the usual
functionality on Asset Expression level: Storage, retrieval, presentation, and querying come to
mind. There are also some special needs, arising from specific qualities of Asset Expressions:
Deeply structured content requires special system support (as content is no longer opaque).
Migration paths to traditional information systems also need to be addressed.

5.1 Scope of Asset Expression Systems

The preceding chapters introduced Asset Expressions which provide flexible means to model
real-world entities based on multimedial content. As such content is nowadays mostly available
in digital form, its handling requires the support of computerized systems. Hence, to employ
the modeling means of Asset Expression on this content, system support for Asset Expressions
is required. An information system which is based on Asset Expressions is called an Asset
Expression System (AES) in the following.

As Asset Expressions are normally created by domain experts, these experts form the
primary group of users of an AES. The system must therefore be designed with their needs
in mind. Roughly speaking, the scope of an AES is therefore to provide individuals or small
groups with the means to use Asset Expressions productively. Likewise, an AES is not built
to handle massive amounts of content or to create extremely large networks of such content.
Handling a large number of entities from an application domain will benefit greatly from the
use of modeling techniques more structured than Asset Expressions [BJJW97, chapter 10].
Much research has been done in the area of highly structured approaches, such as relational
databases and information systems based upon conceptual schemata.

As usual in software engineering, requirements to Asset Expression Systems can be broken
down into two categories: functional and non-functional ones. The former describe specific
behavior of the system, the latter give criteria to evaluate the system’s overall operation in
ways not pertaining to a specific functionality.

Functional requirements are:

• The ability to create Asset Expressions from scratch by the means introduced in chapter 3
or to modify existing ones. Note that modification of expressions seems to conflict with
the reference semantics of Asset Expressions (see chapter 3) as there are no operations
available to modify expressions “in place”, i.e., without using a reference to the expression.

85



86 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

However, in editing systems it greatly facilitates the general editing of expressions as well
as the correction of errors in particular if existing expressions can be modified. Formally,
modifications are rebindings of existing names to the modified expressions.

• Otherwise manage the lifecycle of expressions. While again not prescribed by core Asset
Expressions, lifecycle management issues, such as deletion of expressions, arise with all
realistic usage scenarios. Other lifecycle issues arise when sharing expressions between
users to support collaborative work.

• Navigate Expressions. Asset Expressions store information in networks freeing users from
an imposed linear structure (as would for example be the case in printed media). AESs
must enable users to navigate these networks. Such network-based navigation is similar
to hypermedia systems [BVA+97].

• Retrieve defined Asset Expressions. In the simplest form, this can be done by name,
but structural as well as content-based retrieval need to be available. Such functionality
is central to the AES’ role in supporting the work of domain experts. Systems which
only provide creation facilities hinder communication among users and make reuse of
expressions difficult.

• Act as foundation of higher level services on Asset Expressions. Examples of this will
be discussed in chapter 7: Machine-guided semantic typing or construction of intensional
conceptual models.

Besides the functional requirements outlined above, there are also non-functional ones.
Chief influences on these requirements are the user groups of an AES.

• Flexibility with respect to the way entities are modeled: pass on the flexibility of Asset
Expression to users of the system without artificially limiting users in their modeling
freedom. Such limitations are imposed by schema-based systems and should specifically
be avoided here.

• Helpful visual representation of both multimedial content in general as well as Asset
Expressions in particular.

• A medium level of computer literacy must be sufficient to productively use the system.
This means that for some concepts of Asset Expressions strong guidances are required in
the system to ensure their proper use. Sub-typing is an area typically not well-understood
by non-computer-savvy users. Therefore handling of semantic types needs particular
attention.

• Low infrastructure requirements. This includes a simple installation mechanism as well
as few or loose dependencies on outside systems.

5.2 A General Architecture for Asset Expression Systems

Contemporary approaches to information system creation suggest the generation of such sys-
tems from a conceptual model of the application domain. The Model Driven Architecture
approach [MM03, Sel03] by the Object Management Group as well as the approach to Concep-
tual Content Management outlined in section 2.1.4 are examples of this. However, the idea has
been proposed—and applied to limited scenarios—much earlier [SWBM89]. Based on the con-
ceptual model of the application domain, a generation facility [Seh04, SBS06, SHZ04, AK03]
creates an information system.

A key enabler of system generation is the identification of functionality that is orthogonal
to the application domain. This functionality can be codified in the generation facility and



5.3 STORAGE LAYER 87

Figure 5.1: Three-tier architecture for a system based on Asset Expressions

applied to the application domain each time a system is generated. The set of functionalities
to be available in the generated system is determined by configuration of the generation facility
such that a system can be generated without loosing the ability to customize its functionality.
This is useful if different application domains are to be supported by systems with similar
functionality.

Despite these current trends to system generation, AESs are not generated for two reasons.
AESs have a fixed functionality which is not driven by the application domain (i.e., the domain
for which the users model expressions). Therefore, there is no need to generate a system to
meet a particular set of functional requirements. In fact, AESs are highly specialized, domain-
specific systems. In general, their domain is the modeling and understanding of some particular
application domain. Their purpose thus is not to provide the best possible support for work
done in this specific application domain. A fishery expert is able to express the domain of
fishery by modeling the involved entities. However, the AES does not support the expert in
handling a fish trawler. As Asset Expressions are not based on an (open) schema, there also is
no need for generation to accommodate schema-dependent parts of the system.

It is therefore sufficient to handle Asset Expressions in a generic system for any application
domain. The creation of more static information systems for this domain, which are based on
these Asset Expressions, is described in section 7.2.

A general setup for an AES is shown in figure 5.1. It is separated in three layers which
fulfill the usual presentation, manipulation, and storage tasks. The storage layer is responsible
for the persistence of expressions. On the manipulation layer various services are provided to
create, manipulate, retrieve, etc. Asset Expressions. Finally, the presentation layer interacts
with users by visualizing Asset Expressions and passing on user input to the manipulation layer
below. In the following, the layers are described in more detail from bottom to top.

5.3 Storage Layer

The persistent storage of data is well-understood for a variety of data models, such as re-
lational [LS87, EN94] or semi-structured [Bun97, BPSM+06] ones. To provide persistency
services in AESs generic components can be used. While the data model of the persistency



88 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

Figure 5.2: Logical view of the semi-structured data model for the storage layer. The model
has been simplified: not all AssetExpressionTypes are shown, the selector model is reduced.

component does not really matter, one made for semi-structured data suggests itself. The
reason for this is the tree structure of Asset Expressions which can conveniently be mapped
into semi-structured documents with very little impedance mismatch.

Moreover, if a regular format is used in the documents, later retrieval is also facilitated. It
should be noted that the storage layer is schema-based (as opposed to the Asset Expressions
on the manipulation layer). However, the schema is not that of the application domain of
the expressions created in the system. Rather, it is the schema of the application domain of
the storage layer: a meta-model of Asset Expressions. If this schema is made according to a
normal form (such as the one suggested in [AL04]), the mapping to the data structure of the
manipulation layer is facilitated as it is possible to use automatic tools [MPP00, McL02] to
generate this mapping. The storage layer provides an interface in terms of serialized expressions
to the manipulation layer on top of it.

As a side-effect of the schema-based workings of the storage layer, expressions which are
not well-formed cannot be stored. In fact, it can be required by this storage schema that
only expressions that are also well-typed can be put into persistent storage by making a type
annotation mandatory on each persistent expression. This serves to acertain that persistent
expressions can later be used in all AES use cases.

It is suggested to use an XML [BPSM+06] representation of Asset Expressions as the se-
rialized format. Components to handle the persistency lifecycle are then readily available
(e.g., [Mei02]) and the mapping of AEQL to the persistency component’s query language
(XQuery, [BCF+05]) requires relatively little effort—as will be shown in section 5.4.5—because
the semi-structured representation on the storage layer can closely resemble the tree-based
object model on the manipulation layer.



5.4 MANIPULATION LAYER 89

5.3.1 Semi-structured Data Model for Asset Expressions

Figure 5.2 shows a portion of a semi-structured model for storing Asset Expressions. The
figure uses the logical view proposed in [RBG02], which maps XML elements and types onto
UML classes. This allows a concise yet relatively precise representation of the model. Each
class is annotated with a stereotype which distinguishes elements from types. The model is
in element normal form [AL04]. Therefore, the types only contain elements as denoted by
the ≪elt≫ stereotype. The elements are either of a complex type (which is described in the
diagram) or of a built-in simple type from the namespace for XML Schema xs. Most complex
types are associated with an element which is of that type. Asset Expressions are modeled in
semi-structured documents according to this model.

The structure of each type of Asset Expressions is modeled in the extensions of the com-
plex type AssetExpressionType. There is one type each for content, variables, abstractions,
applications, name references, and name bindings (the last two are not shown in the diagram).
The elements of each type reflect the recursive structure of Asset Expressions. Additional
types model selectors (with an extension type for coords-abs selectors, many other selectors are
not shown) and hierarchies of semantic types. Note that its semantic type is given on each
expression.

The depicted model simplifies several aspects of Asset Expressions in an effort to keep the
diagram concise. The subtypes of AssetExpressionType, which model the naming of expressions
and the referencing of these names, are left out. Component handling is omitted altogether
and selectors are attached directly to abstractions. In the full schema, all three handlings are
made explicit. Finally, only a single kind of selector is shown.

References to other expressions might occur in the persisted expressions. To implement
these references on the storage layer, referencing mechanisms existing on this layer should be
used. This has the advantage that references are transparently available, e.g., to queries. A
referencing mechanism for XML is XInclude (see section 2.4.2), which inserts a referring element
in the place of the reference. When encountering such a referring element, implementations
can act as if the reference target were inserted in this place.

5.4 Manipulation Layer

The core functionality of an AES is realized on the manipulation layer. The layer works
on an object representation of Asset Expressions. The functionality comprises operations to
control the lifecycle of Asset Expressions as well as facilities that serve to organize expression
instances and content kinds. In particular, expressions can be constructed from scratch or by
recombination of existing expressions. Querying for expressions is also supported based on the
AEQL presented in section 4.2. The manipulation layer provides reduction of expressions for
the cases that were discussed in section 4.4. Different kinds of content need to be handled on
this layer and the appropriate selectors and means to create and reduce components must be
available. To this end, a registry of content kinds is introduced which ties together each kind
of content with the applicable selectors. This registry is discussed in section 5.4.2.

It is a key task of the manipulation layer to structure the managed expressions in a way
that supports each user in handling his or her expressions and that also supports groups of
users in controlling their collaboration. The central paradigm to achieve this structuring is
that of workspaces which will be introduced in the next section.

5.4.1 Workspaces

The application layer offers an extensible set of workspaces to its users. Each workspace has a
unique name, contains a number of expressions, and is associated with two roles: its prospector
and its inspector. The roles are filled by physical users who can take different roles for different



90 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

Figure 5.3: Each workspace has two associated roles—prospector and inspector—which are
filled by physical people. While there may well be several inspectors, there will typically only be
a limited number of prospectors.

workspaces. Figure 5.3 illustrates this situation. Often there will be a direct correspondence
between workspaces and application domains, but this does not have to be the case and is not
enforced by an AES.

The prospector of a workspace is the user who does active work in the workspace by,
e.g., creating expressions. Technically, the prospector can be thought of as the one having
write access to the workspace. The inspector can only read the expressions but not do any
manipulations in the workspace. Students can, for example, pose questions to the teacher
by creating expressions which have incomplete explanations to point out parts of content the
students does not understand.

Users can be in several roles for different workspaces at the same time. This enables them
to create interconnections between the workspaces by referencing expressions in a workspace
for that they are inspector from a workspace for that they are prospector:

• A user can be an inspector in several workspaces of other users to use/reference entities
created there (creating interrelations with the application domain of the other workspace)
or to look at entities presented in the workspace to learn about (the prospector’s view
of) the application domain.

Figure 5.4: Workspace scenario of teacher-student collaboration



5.4 MANIPULATION LAYER 91

Figure 5.5: Conceptual model of the registry of content kinds which links technical types of
content to the content kinds used in Asset Expressions as well as the corresponding selectors
and reduction strategies.

• A user is prospector of at least one workspace in which this user is the “primary in-
vestigator” of the application domain. Prospectors automatically possess investigative
capabilities for their workspaces. Therefore a user who is modeled as a prospector is
implicitly also inspecting, even though not also modeled as an inspector.

• With symmetric inspector-prospector relations, groups with peer relationships among the
members can be founded. Using hierarchical relationships is also possible, for example
to model teacher-student relationships as shown in figure 5.4.

The roles of prospector and inspector are also found in the Dockets approach [SS99] as
reviewer and evaluator. Dockets also propose a thrid role of content provider which is assumed
by the prospector in an AES.

In the context of workspaces it is important that names of expressions can be referred to
by a unique name. Each name therefore consists of two parts: a local part and a names-
pace. This separation is used to ensures uniqueness of names (also compare namespaces in
XML [BHLT06]). The local name of expressions is unique in the workspace the expression
resides in (the local workspace of the expression). Each workspace has a name which is the
namespace component of the names of expressions in this workspace. The full name of an
expression can then be used to refer to the expression from a workspace other than its local
one.

Workspaces provide a point of entry to the presentation layer as they control the scope of
the visualization of expressions (compare figure 5.1, more details in section 5.5).

5.4.2 Content Kind Registry

Asset Expressions are not concerned with technical content types (e.g., the encoding of an image
or the file format of a textual document) but with an abstraction over the technical types in
the form of content kinds as introduced in section 3.2 (also see figure 3.5 on page 54 which
shows technical types that are examples of each kind). Implementations of Asset Expression
Systems must deal with technical types as well as content kinds because the purpose of an AES
is to lift the level of abstraction from opaque content—available in, e.g., a file of a particular
technical type—to Asset-Expression-based content of a corresponding kind. Based on these
kinds of content the system must be able to apply appropriate selectors to define components.

Figure 5.5 shows a conceptual model of the registry. The registry itself is associated with
pairs of (technical type, content kind) which are then equipped with the corresponding selectors



92 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

and reduction strategies. For each content kind several selectors might be available, but there
is only one reduction strategy.

The AES needs to provide extension points to hook additional pairs of (technical type,
content kind) into the system that were not considered during the original development. This
is necessary due to the large amount of technical content types available. It is then also possible
to fine-tune the set of available selectors to the needs at hand, i.e., to create additional selectors
beyond those described in chapter 3.

The reduction strategy is comprised of two parts: implementation of reduction for abstrac-
tion based on piece-handling (section 4.3.3) and of reduction for abstraction based on use-
handling (section 4.3.2). The former is usually straight-forward as it requires the extraction
of a part of the existing content. The latter requires knowledge about other technical content
types as it requires substitution of components into larger content. To support this type of
reduction, interdependencies between entries in the registry can therefore not be avoided.

5.4.3 Persistency Points

The storage layer provides persistence services to the manipulation layer. It is the task of the
manipulation layer to determine when to make use of these services. In particular, this raises
the question of when to make expressions persistent. Several possible solutions are available,
for example:

• at once – any expression will be made persistent directly after its creation

• explicitly – users request explicitly that an expression should be made persistent

• at naming time – expressions that have names are automatically persistent

When expressions are made persistent at once, it means that the creation of an expression with
two explanations over a content will cause five entries in persistent storage: First, the content
itself is made persistent, then the subsequent first abstraction is an expression in its own right
and therefore made persistent, etc. until finally the second application is created. This causes
a high amount of clutter in the form of intermediate expression to be stored with the expression
that was actually meant to be created. While this approach achieves a high level of security
against data loss, it is deemed overly aggressive.

An explicit approach to persistence requires the user to request persistency for an expression.
Document based editors1 commonly work this way. Experiences show that this request is
easily forgotten. Explicit persistency also introduces a transparency issue for the users: Any
expression that is reachable (i.e., transitively referenced) from a persistent expression must also
be made persistent to ensure that the persistent storage remains in a consistent state. This
makes it difficult for users to determine which expressions are in persistent storage.

A working middle ground between immediate and explicit persistency is the persistency of
expressions at naming time. In this approach, an expression is made persistent when it is given
a name. This avoids the clutter of making all intermediate expressions persistent but also does
not introduce an additional feature, which has to be learned and remembered by the user. The
idea which determines the granularity of persistency in this approach is that anything the user
deems worthy of a name is also worthy to be saved. At the same time, tieing persistency to
naming avoids problems with reachability in the persistent storage. Any expression that is
reachable from another is so by name. Since the referenced expression has a name, it must also
be persistent. Quite conveniently, any persistent expression can easily be retrieved since it is
named, making additional “handle” or “expression identifier” mechanisms unnecessary.

Figure 5.6 gives an example of the lifecycle of expressions under the persistency at naming
time approach. The anonymous expression, which is created first, is not written to persistent

1Any editor that has as its unit of abstraction a document of some kind, often also called a “file”. If the
editor has a visual interface, there usually is a menu titled “File”.



5.4 MANIPULATION LAYER 93

Figure 5.6: Lifecycle of Asset Expressions in the persistency layer using persistency at naming
time.

storage. The subsequently defined (and named) expressions are. The expression c uses the
previously defined expressions and references them by name. When c is made persistent, all
prerequisites are already in place.

5.4.4 Reduction

The reduction engine on the manipulation layer follows the substitution rules for the general
λ-calculus as from section 2.2.1 as well as the additional specific ones for Asset Expressions
described in section 4.4. The implementation of these rules results in a reduction engine which
will work on expressions to produce new, reduced expressions, which reside in the manipulation
layer. An implementation can be made by directly following the presented rules. The reduction
engine needs to work with the content kind registry to retrieve reduction strategies for particular
content kinds. This ensures the extensible handling of the diverse landscape of contents, which
might be present in an AES.

Besides this reduction on the manipulation layer, there also is a “reduction for the user”. In
the mind of the user, a full reduction of a presented expression is possible as all necessary context
information is available. This context information has been provided by Asset Expressions to
fill possible gaps in the user’s previous context information (also see page 43). Expressions
which have been understood by a user can be reduced by this user because the result of the
reduction is representable (it is the understood idea). This cannot happen on the manipulation
layer, but some support is possible on the presentation layer as will be discussed below.

5.4.5 Query

The manipulation layer provides services in terms of Asset Expressions to the presentation
layer above it by abstracting from the services in terms of semi-structured documents provided
by the storage layer below. Included in the services available to the presentation layer is the
ability to pose queries in AEQL. These queries need to be evaluated against the data available
on the storage layer.

One solution would be to load all documents from the storage layer, to convert them into
expressions on the manipulation layer, and to then run the query against these expressions.
This approach requires the availability of all expressions on the manipulation layer, which
causes an AES to, e.g., load all expressions on startup. The feasibility of this approach is
questionable for reasons of scalability.

A different solution is the translation of AEQL into the query language of the storage layer.



94 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

The query can then be run on the storage layer and only the results have to be materialized
into Asset Expressions. This approach requires, however, a full mapping of AEQL into the
query language of the storage layer. One common query language on a semi-structured storage
layer is XML Query [BCF+05] (XQuery in the following).

XQuery is a Turing-complete language [Kes02] for semi-structured data in the form of XML
documents. Below a mapping of AEQL onto XQuery is provided. Since both XQuery and
AEQL work on tree structures and are also somewhat similar in their approaches to navigation
as well as filtering, this mapping can be achieved by structural recursion on AEQL. The XQuery
fragment corresponding to each element of AEQL will be described below.

Implementation: Mapping to XQuery

Let m : AEQL → XQuery be a mapping function which translates an AEQL expression into
the equivalent XQuery expression. This function is then defined piece-wise as shown below,
but not all XQuery fragments are printed as they can become very lengthy. For the conversion
of names a function name(a) exists, which simply returns the fully qualified name of a, being
either a semantic type or a name reference. An appropriate XQuery preamble is assumed for
the following mapping. It contains all required XML namespace declarations, at least the one
for the Asset Expressions schema bound to the prefix ae and one of the XInclude schema
bound to xi as well as implementations of the functions used in the XQuery code created by
m.

During the mapping, a context of variables keeps track of transiently defined variables from
AEQL foreach . . . in . . . expressions.

• simple path: This path is mapped to the direct “descendant” XPath-axis:

m(/e) = /m(e)

• main path: The main path cannot be mapped directly to an XPath axis. Instead, an
XQuery function mainAxis(n as element*) is used which filters a given sequence
of nodes n according to the semantics of the main path by starting with the descendant-
or-self nodeset and removing from it any node that is only reachable via an operand
element.

m(d//e) = mainAxis(m(d))m(e)

• all path: For the all path a direct mapping to the XPath-axis “descendant-or-self” is
used:

m(///e) = //m(e)

• type of : Due to subtyping all subtypes of the given type have to be searched for. This is
not as bad as it seems at first glance as the types of nodes in the context do not have to
be computed but are given explicitly. An XQuery function which implements the rules
for type substitutability from section 3.3 is assumed. Its signature is isSubstitutable(t as
xs:string, u as xs:string) as boolean.

m(d: T ) = isSubstitutable(m(d)/@typeName, name(T ))

@typeName references the attribute that annotates the type on each stored expression as
described in the storage layer schema given in figure 5.2.

• expression kind axes: It is necessary to constrain the XML element name, for the
/abstraction axis this is:

m(/abstraction e) = /abstraction m(e)

The other axes are mapped analogously.



5.5 PRESENTATION LAYER 95

• relationship kind axes: A similar argument applies to the relationship axes. These can
also be mapped to XQuery name test due to the rich model at the storage layer which
makes these axes explicit. As an example, consider the operator axis:

m(/operator e) = /operator m(e)

Again, the other relationship axes are mapped analogously.

• constructors: The expression constructors for Asset Expression map directly to the
respective element constructors in XQuery:

m(λd.e) = < ae : abstraction >

m(d)

< ae : expression >m(e)< /ae : expression >

< /ae : abstraction >

m((d)e) = < ae : application >

< ae : operator >m(d)< /ae : operator >

< ae : operand >m(e)< /ae : operand >

< /ae : application >

and so forth for variables, content, name definitions, and name references.

• foreach: Iteration is mapped using the FLWR construct in XQuery (see page 41). AEQL
variables which are introduced need to be added to the variable context before mapping
of the embedded parts. If multiple variables are introduced in foreach (compare the
examples in section 4.5), multiple XQuery for clauses are needed.

m(foreach v in e where p return r) = for m(v) in m(e) where m(p) return m(r)

• name references: There are two cases of name references: transient variables created
by foreach . . . in . . . expressions and references to (persistent) Asset Expressions. If the
use of the former is detected from the variable context, the name reference is converted
into an XQuery variable:

m(v) = $name(v)

In case of a reference to an Asset Expression, the corresponding XInclude constructor is
inserted:

m(v) = < xi : include href = ”$name(v)”/ >

Name-references are only transparent to queries if the underlying implementation (XMLDB)
can index XIncludes in conjunction with XQuery. If such an implementation is not available,
a workaround is the expansion at storage time [eXi] of XIncludes. However, this comes at a
high maintenance cost when rebinding names as all previously expanded references have to be
found and replaced. The exact cost thus depends on the amount of references used and the
cost of sub-tree replacements in XML documents.

5.5 Presentation Layer

Capturing entities through explained multimedial content requires domain experts to provide
the appropriate descriptions. Obviously, the available description mechanisms must be appro-
priate to the domain expert. In particular, complex mechanisms that aim to provide as rich a
model as possible often assume familiarity with computer science concepts such as class-based
inheritance [DT89, BB04]. Asset Expressions tip the scale of formality [MGMW05] towards



96 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

Figure 5.7: A graphical user interface of manipulating Asset Expressions. The notation used
is very similar to that introduced in chapter 3. The “building” abstraction is not filled by an
application.

the user by having only two essential concepts: abstraction and application. Nevertheless,
representing these concepts well on the presentation layer remains crucial to the success of
AESs.

A central issue of the presentation layer is the adequate presentation of expressions to
the user without having available any additional information on the application domain. The
presentation layer in an AES is based on the visual notation for Asset Expressions which was
introduced in chapter 3. Screenshot of such a presentation layer is shown in figures 5.7 and 5.8.
Based on this visual notation domain experts are enabled to create expressions describing the
entities at hand without having to fully understand the underlying formalism.

Asset Expression systems take an approach to user interaction described aptly in [BCM99]
(variables for back-references removed):

“In the model of visual HCI [human-computer interaction] we propose, the dia-
logue between human and computer is modeled by two processes of interpretation-
materialization [. . . ]. The two participants, namely the human user and the com-
puter, communicate by materializing and interpreting images visible on the com-
puter screen at successive instants [. . . ].”

The presentation layer displays expressions by breaking them down into their components.



5.5 PRESENTATION LAYER 97

Figure 5.8: Drag-and-drop between workspaces.

For each component a visualization is available which might be based (for example in the cases
of abstractions and applications) on the visualizations of further subexpression. A similar
approach is described in [ROH05] to display RDF2 documents: To display these documents,
recursion along the structure of the documents is used. A distinction is made between global
views (which deal with many documents at a time) and local views (which show the details
of a document). This gives rise to the questions of presentation granularity, integration of
different granularities, as well as navigation through and selection from the repository. A
similar distinction is made in the presentation layer of the AES as shown in figure 5.7. On the
left is a global view in the form of a list of all expressions in the workspace. In the main part
of the window one expression is shown in a detailed local view.

Granularity is also an issue for displaying Asset Expressions. The power of the presen-
tation layer lies in the creation of an appropriate visual co-occurrence of explained content
and explaining descriptions. Such a co-occurrence can only be appropriate if the explanations
displayed alongside the content are the ones which fill the gaps in the viewer’s contextual in-
formation. In any case, a full recursive break-down of all expressions which are transitively

2RDF: Resource Description Framework [MM04, Bec04] language for expressing machine-understandable
descriptions of world-wide-web resources. Also see section 2.3.3.



98 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

related to the content does not constitute such an appropriate display. However, what exactly
to display, i.e., what granularity to use on the explaining expressions, is up to the particular
viewer of the presentation.

Furthermore, a user might not be interested in all details described in the explanations of
the expression. The presentation layer provides a tool to hide unwanted explanations to reduce
the cognitive load on the user. This tool works by expanding or collapsing explanations at
their abstractions (showing or hiding the applied expression).

The components of a content require particular attention in the presentation layer. De-
pending on the kind of content, different mechanisms need to be available to visualize the
components. A visualization of components in an image is shown in figure 5.7. If the extension
mechanisms on the manipulation layer are used to add new kinds of content, the presenta-
tion layer also requires extension with corresponding display, creation, and editing facilities for
components in this content kind. Components can also be used to determine the granular-
ity of explanation display by showing full expansions only if the component is selected. Also
see [CCFS95] on the adjustment of detail level in graphs in general and [TH05] on shrinking a
large diagram into a “top-k” diagram of its most important nodes.

5.5.1 Navigation

Navigation in Asset Expression Systems can be broken down into two parts. The first part
are the actions of the user (e.g., opening a referenced expression) and the means available to
express these actions to the system. The second part is the reaction of the system to the user’s
actions. Here the problem is how to most appropriately cope with the new situation created
by the user.

This section is concerned with the actions of users when navigating the expressions in a
workspace. There are a number of different kinds of navigation [BBF+02]. When browsing
(also see [Kwa92]) users pursue two goals: finding the core of interest and searching this
core. Browsing ignores the exact structure of an expression, rather users glance over large
expressions to find the core of interest. Directed searching requires some pre-built structure
in the expressions to be searched, which can either be expressed in particular explanations of
expressions or dynamically created by appropriate queries (e.g., for all expressions of a certain
semantic type).

When navigating expressions, users create a history of expressions they have visited. Many
times the navigation does not yield the desired expression—much like clicking a link when
surfing the world-wide-web might lead to a document that does not hold the desired content
even though the link suggested it. For these dead ends, the system offers the users the oppor-
tunity to jump back to a previously visited expression in the history. This form of backwards
navigation has been popular with web-browsers for a long time and is also spreading to other
types of systems, e.g., integrated development environments.

Hypermedia systems have different possibilities to react to the activation of a link [HBR93]:
The existing presentation can be augmented with additional information or replaced entirely.
In the model of [HBR93] each link is accompanied by a structured context, which describes
the “scope of information which is affected by following a link”.

A similar notion can be applied to the presentation of Asset Expressions. However, there
is no need to annotate each application with a structured context. Instead, two situations are
considered. Each of them is treated with a different context: The expansion or collapsion of
applied expressions, and the display of referenced expressions. When expanding or collaps-
ing explanations to produce a co-occurrence of explained and explaining entity which is of
appropriate granularity, the existing presentation is augmented with the visualization of the
explaining entity. When dereferencing named expressions, the current presentation is replaced
by the presentation of the referenced expression.



5.5 PRESENTATION LAYER 99

Figure 5.9: The automatic layout algorithm distributes explanations evenly around the con-
tent. This scheme is repeated for sub-expressions.

5.5.2 Automatic Layout

When users create expressions by using the direct construction tools on the presentation layer,
they provide a layout for these expressions at the same time. However, many expressions are
not created by these tools, for example the results of those queries that do not simply return
available expressions. For such new expressions the presentation layer needs to be able to
devise a visualization layout for the expression elements.

Algorithms for automatic layout generation are available in literature, [LF01] provides a
survey. Several different methods can be distinguished: simple (e.g., with an explicit layout
manager), constraint based, and learning techniques.

This presentation layer uses a simple layout manager, whose layout algorithm is described
below. Constraints cannot be used for layout without burdening the user with supplying these
additional constraints of each expression which is to be visualized. If this expression has just
been created, the amount of work is roughly equivalent to manually laying out the expression.

The layout manager for automatic layout of an expression e works as follows. The algorithm
assumes a wedge w which is a portion of a circle defined by start and end angles (the full areas
of the wedges are shown in the background of figure 5.9, which illustrates the algorithm).

1. Find the innermost content C0 by recursively following the /operator path on each ap-
plication and the /expression path on each abstraction of the expression e until a plain
content is reached.

2. Put C0 in the center of the display area.

3. Determine the set A of all abstractions over C0.

4. Lay out the abstractions equidistantly on the wedge w around C0.

5. For each abstraction a ∈ A compute its corresponding wedge wa and find the applied
expression ea. Set e := ea and w := wa and continue at 1.

The algorithm creates nested wedges on which the expressions are distributed. The wedges
become narrower with each level of nesting. Depending on the presentation capabilities of the
system, simplifications (e.g., elision of components) should be used on outer levels.



100 CHAPTER 5: SYSTEMS FOR ASSET EXPRESSION SUPPORT

As in other graph editors [PBE98], the presentation layer differentiates between the expres-
sion and the expression’s layout. The two are stored separately from each other. The encoded
layout information is passed on as content to the manipulation layer which in turn puts it into
persistent storage.



Chapter 6

Asset Expressions and

Conceptual Schemata

Asset Expressions are used to model entities from the real world by creating networks of
explained content which describe these entities. Expressions are created on an individual basis
and no two expressions have to be alike, neither in structure nor in content. However, in many
practical applications a good understanding of the domain of interest leads to opportunities to
reuse past effort and thereby arrive at descriptions which are more compact in size as well as
exhibit a higher degree of interrelation. Such reuse can, for example, take place by factoring
out structural commonalities between expressions or by reusing modeling effort in structurally
similar expressions.

Some means in this direction are offered by Asset Expressions. Common descriptions that
appear in multiple expressions can be referenced from all occurrences. Expressions can be typed
in semantic types, creating groups of expressions that share a common type but can be unrelated
in structure. The common type relates them semantically. If some structural interrelation is
also desired—for example because it facilitates the collaboration of groups—traits can be used
to capture such common structure and serve as templates for future expressions.

Situations might arise where even more structure is desired. In these cases, the high degree
of flexibility of modeling with Asset Expressions takes second place to needs which call for
a very regular description of application domains. Examples of such cases are information
systems which have to support the collaboration of a large number of users—some experts,
some novices—or which need to interface with other systems. Both scenarios typically require
conceptual models of the application domain to be realized. Practical experience shows that in
many such systems (and in fact in all productive CCMSs) classification (i.e., semantic types)
and conceptual (as introduced in this chapter) coexist [Nor95].

This chapter describes how a conceptual schema can be obtained from an Asset Expression.
To this end, a type system for Asset Expressions is constructed which types expressions with
intensionally defined classes. These classes can then be used to construct a conceptual schema
of the application domain described by the Asset Expressions, as will be detailed in section 7.2.

If an information system is constructed based on the conceptual schema of the application
domain, Asset Expressions can be carried over into this system as they are typeable in the
classes the system is based on. Practically, Asset Expressions need to be converted into objects
in the software system. This mapping—which will also be presented below—is closely related
to the class-based typing rules for expressions. Figure 6.1 illustrates this process. Classes are
used to type both expressions and instances. The latter two can—under some conditions—be
converted into each other.

The conceptual modeling paradigm used in this chapter is that of Conceptual Content
Management (CCM) as described in section 2.1.4. It is a class-based paradigm which describes

101



102 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

Figure 6.1: Conversion of freely modeled Asset Expressions into instances of a class-based
conceptual schema. The typing of Asset Expressions in classes can fail and therefore determines
the expressions that can be converted.

entities intensionally. Its advantage over other paradigms in the context of Asset Expres-
sions lies in its dualistic modeling of entities based on multimedial content and conceptual
descriptions. This matches well with the approach of Asset Expressions to describe entities by
explained content. The Conceptual Content Management Systems can be generated from the
conceptual schema. This allows open changes to the model and systems that dynamically react
to these changes. Openness and dynamics integrate well with Asset Expressions which can be
used to support these two properties through the type system presented in this chapter.

6.1 Intensional Typing of Asset Expressions

This section describes a class-based type system AEC for Asset Expressions. In contrast to the
type system AE→ of semantic types introduced in section 3.3, the types in AEC are defined
intensionally. They reflect the structure of the descriptions of entities, which is common to
many conceptual modeling approaches (e.g., in the Entity-Relationship approach [Che76] or in
Conceptual Content Management (CCM) [Seh04]).

Multimedial content plays an important role in Asset Expressions. Matching this, the
modeling approach used in the class-based typing is CCM which offers dualistic models of
entities through both a multimedial representation and a conceptual description of the entity.
These pairs are Asset classes with two compartments: one for content and one of conceptual
attributes. This section will use the following notation to denote an Asset class A with medial
contents c1 . . . cp and attributes m1 . . . mk:

A :=




c1 : H1 m1 : T1

...
...

cp : Hp mk : Tk




T1 . . . Tk are types of attributes, H1 . . . Hp are content handle types as defined in section 2.1.3.
In this model, the members of the class are ordered. The order of members of the Asset classes
defined in CCM is not specified, but the typing rules for Asset Expressions can be stated in a
more concise manner if an ordering is assumed.

Also for the purposes of defining the typing rules, an extension operator ⊕ on Asset classes



6.1 INTENSIONAL TYPING OF ASSET EXPRESSIONS 103

is defined which creates a new Asset class from two existing classes by appending the members
of the second to the first:




c1 : H1 m1 : T1

...
...

cp : Hp mk : Tk




︸ ︷︷ ︸
=:A

⊕




d1 : I1 n1 : U1

...
...

dq : Iq nj : Uj




︸ ︷︷ ︸
=:B

=:




c1 : H1 m1 : T1

...
...

cp : Hp mk : Tk

d1 : I1 n1 : U1

...
...

dq : Iq nj : Uj




︸ ︷︷ ︸
=:C

Each class in this model is assumed to have a unique name. The name is of no further
importance in AEC as this type system is purely structural. The structural nature of the type
systen does, however, not imply that structural subtyping is used, i.e., with A, B, and C as
above it is not the case that C <: A or C <: B.

Using this model, the system AEC of intensionally motivated types will be developed be-
low. Essentially, abstractions are reflected as conceptual attributes and content from Asset
Expressions is modeled in the content compartment of the Asset class. The model works on
top of functionally-typed Asset Expressions. This is necessary as otherwise no distiction could
be made between the types of typed, but otherwise not explained, contents, see the typing
rules for content in section 6.1.2. These contents—which are the atoms that are assumed to be
universally understood without explanation—occur quite often and can be of a variety of se-
mantic types. It would therefore be inappropriate to model them all with the same intensional
type in the class-based type system. AEC is a Church-style system [Pie02, 9.6] in which only
semantics of well-typed terms are defined.

AEC indicates how to convert the expressions into instances of the class they have been
typed as. In the following examples these instance are written with square brackets. Intuitively,
explanations in the expressions are converted into members in the Asset instance. In the
conversion directly applied content (i.e., content that does not require explanations of its own)
is mapped onto characteristics in the Asset instance:

(λy.(λx.C1)A)B ⇔

[
C1 x = A

y = B

]

If A and B are plain content. If, however, the operand of an application is richly modeled
in itself, the operand is converted to a separate Asset instance. The instance for the overall
expression then references the instance for the operand:

(λy.(λx.C1)A)(λa.C2)D ⇔

[
C1 x = A

y =

] [
C2 a = D

]

Such conversions will be discussed in more detail in section 6.2. As they are based on AEC ,
some details on this type system follow first.

In the following S is the set of semantic types used for typing in AE→. In this chapter only,
the semantic type T of an Asset Expression e will be written as e⋄T, the colon used previously
is used for class-based types here. In the following, AE is the set of all Asset Expressions, A
is the set of all Asset instances. C ⊆ AE is the set of all Asset Expressions which are plain
content.



104 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

6.1.1 Types

The set of ground types for AEC is slightly more complex than in AE→. It is G = G0 ∪ GC ∪
{Asset} with the following elements:

• Asset :=
( )

the built-in, empty base-class. It will become the super-class of all
classes used to type Asset Expressions. Asset is an Asset class and thus different from
the semantic type Any.

• G0 = {int ,String ,Date, ...} the set of base types for characteristics. The types, that
can be used for characteristics in Conceptual Content Management, stem from the base
language used in CCM systems.

Mappings of specified semantic types to these characteristic types for classes will be
defined in section 6.1.3. A function mapS(TS) : T0 is available that implements this
mapping. It returns the characteristic type T0 ∈ G0 corresponding to the semantic type
TS if a mapping is available, Asset otherwise. Note that the characteristic types are not
sub-types of Asset:

mapS(TS) =





c ∈ G0 if a mapping exists
Asset else if TS is a simple semantic type
Asset∗ else TS is a list type

• GC = {Image,Text , ...} the set of handle types for content. Similar to the types in G0, a
mapping to find the handle type in the target system must be supplied. This mapping is
implemented by a function mapC(C) : TH that returns the content handle type TH ∈ GC

depending on the content kind of content C.

The inverse counterparts of both mapping functions are also needed. They are not necessary
for typing expressions as in this case there only is a conversion of semantic types/content kinds
into Asset types. However, as expressions are also to be converted into Asset instances and vice
versa, the inverses of the mapping functions will be needed in section 6.2 where the conversion
of instances is defined.

The elements of the set G as well as more specialized Asset classes can be obtained in three
ways:

1. By invoking the functions mapC and mapS for content and characteristic types, respec-
tively.

2. By extending existing class types with the ⊕ extension operator. Chains of such exten-
sions always start from Asset.

3. By using the type constructors ∗ and → on a type A. The former creates a set type A∗,
the latter adds a functional marker to the type: A → open. Functionally marked types
are legal in intermediate typings only. Their occurrance in the final type for an expression
indicates that this expression is ill-typed. Use of the functional marker will be explained
in detail with the typing rules in the next section.

6.1.2 Typing Rules

This section introduces the typing rules for AEC . Expressions must be well-typed with respect
to AE→ as otherwise the mapping functions for content handle types and characteristic types
cannot be used.

In this chapter only, the semantic type T of an Asset Expression e is written as e ⋄ T, the
colon used previously is used for class-based types here. Thus, the context Γ takes the following
form in this section:



6.1 INTENSIONAL TYPING OF ASSET EXPRESSIONS 105

Γ ::= ǫ | Γ, x ⋄ T | Γ, C ⋄ T for variables x and contents C

Where ǫ is the empty context. Apart from this, typing rules are stated in the same syntax
that was used in section 3.3.4 to describe AE→.

Variables are typed in semantic types, their AEC type can be determined with the mapping
function mapS .

x1 ⋄ A1, . . . , xm ⋄ Am ⊢ xi : mapS(Ai) i ∈ [1,m], Ai ∈ S

Plain content is typed in Asset classes if its semantic type does not map to a characteristic
type. If it does, it is typed with the assigned characteristic type from G0.

mapS(A) ∈ G \ G0

Γ ⊢ c ⋄ A :
(

c : mapC(c)
) mapS(A) ∈ G0

Γ ⊢ c ⋄ A : mapS(A) c ∈ C

Each content in an Asset class has a name. Since Asset Expressions do not give names for
content, the constant name “c” is used. Lists of content are typed with an Asset class that has
multiple entries in the content compartment:

mapS(Ai) ∈ G \ G0, i ∈ {1 . . . N}

Γ ⊢ {c1 ⋄ A1, . . . , cN ⋄ AN} :




c1 : mapC(c1)
...
cN : mapC(cN )


 ci ∈ C

Similarily to the single content case, names are invented for each content.
To achieve intensional typing, abstractions of Asset Expressions are reflected as attributes

in the Asset class. Therefore, the class is extended with an additional attribute for each
abstraction in the expression. However, as only expressions with complete explanations are
well-typed, the new attribute is not given the type that corresponds to the abstraction right
away. Instead, a functional type is used to mark that no application has been encountered for
this abstraction. If no such application exists in the expression, the attribute in the class will
remain of function type. The expression can then be recognized as ill-typed.

The reason for the ill-typedness of expressions with incomplete explanations is as follows.
In class-based systems the counterpart of Asset Expressions which model individual entities
are instances. These instances are created from classes in one step (compare, e.g., the “new”
operator in [AC96]). During this step values are supplied to all attributes. These values can
be default or null values, but a value has to be given for each attribute. Therefore, Asset
Expressions whose class contains function-typed attributes are considered ill-typed as there is
no value for the attribute. To change this behavior, one can simply not consider the indicator.

The typing rule for abstractions extends a class B by an additional attribute x which is
appended to the existing attributes of B:

Γ, x ⋄ A ⊢ e : B B /∈ G0

Γ ⊢ λx ⋄ A.e : B ⊕
(

x : mapS(A) → open
)

The name of the new attribute is taken from the name of the abstraction variable. open is
a built-in type flag that signals an open abstraction. The indicator type for the attribute is
usually Asset → open if A cannot be mapped to a characteristic type. The indicator will
be removed by the corresponding typing rule applications. It is important for the interaction
of the two rules for abstraction and application that the attributes of the class are ordered.



106 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

Attributes of function type (i.e., attributes for which the matching abstraction has not yet been
encountered) form a stack at the end of the attribute list. The typing rule for applications moves
the attribute to the front of the list when its corresponding application is encountered. It is
thus ensured that abstractions and applications will be paired correctly. Multiple abstractions
can be nested and are matched with their applications.

Consider the expression bookpart := λtitle⋄ Name.C as an example and assume that C :
( |x : T ). Then bookpart is typed in AEC as follows:

bookpart :

(
x : T
title : mapS(Name) → open

)

Abstractions extend the Asset class by a member that is typed in a function type. Applica-
tions collapse these function types of an attribute and prepend the attribute to the class. An
ordinary Asset class emerges for well-typed expressions:

Γ ⊢ e : B ⊕
(

x : C → open
)

Γ ⊢ f : A A <: C

Γ ⊢ (e)f :
(

x : A
)
⊕ B

In the context of the application, the actual type of the applied expression is known and can
be used as the type for the attribute of the class. The expression

bookfull := (bookpart)SomeName=(λtitle⋄ Name.C)SomeName

is typed as follows:

bookfull :

(
title : mapS(Name)
x : T

)

All types generated by explanations are direct subtypes of Asset. Characteristic types
are defined explicitly and can therefore participate in more detailed inheritance hierarchies.
Substitutability of Asset Expressions is defined based on semantic types. It can therefore not
be reproduced in intensional types because without loss of generality no injective mapping from
semantic types to intensional types can be assumed.

Lifting of expressions changes their semantic type to a more specific one. This has no effect
on the intensional structure of the type:

Γ ⊢ e : A
Γ ⊢ e ↑ T : A T ∈ S

Lists of expressions are typed similarly as before, of course now in AEC types:

Γ ⊢ ei : A

Γ ⊢ {e1, . . . , en} : A∗ i ∈ [1, n], A ∈ G

All typing rules are summarized in figure 6.2.

6.1.3 Types for Characteristics and Content

Semantic types of Asset Expressions are not preserved in AEC as semantic types have no
defined structure to make them suitable starting points for creating classes. However, two
cases have been identified above in which special care has to be taken to determine the type
of an expression in AEC . One such case is the typing of characteristics as part of the concept.
Semantic types need to be converted to a specific primitive type for the characteristic. The
other case occurs because content is of content handle type—which is technically motivated—in
Asset classes, while the semantic type of content in Asset Expressions has no relation to the
content’s technical type. Therefore, semantic types cannot be converted into content handle
types. Instead the content handle type is determined from the content kind.



6.1 INTENSIONAL TYPING OF ASSET EXPRESSIONS 107

Content1

mapS(A) ∈ G \ G0

Γ ⊢ c ⋄ A :
(

c : mapC(c)
)

c ∈ C (6.1a)

Content2

mapS(A) ∈ G0

Γ ⊢ c ⋄ A : mapS(A) c ∈ C (6.1b)

Content3

mapS(Ai) ∈ G \ G0, i ∈ {1 . . . N}

Γ ⊢ {c1 ⋄ A1, . . . , cN ⋄ AN} :




c1 : mapC(c1)
...
cN : mapC(cN )


 ci ∈ C (6.1c)

Abstraction

Γ, x ⋄ A ⊢ e : B B /∈ G0

Γ ⊢ λx ⋄ A.e : B ⊕
(

x : mapS(A) → open
)

(6.1d)

Application

Γ ⊢ e : B ⊕
(

x : C → open
)

f : A A <: C

Γ ⊢ (e)f :
(

x : A
)
⊕ B (6.1e)

Lifting
Γ ⊢ e : A

Γ ⊢ e ↑ T : A T ∈ S (6.1f)

Lists

Γ ⊢ ei : A

Γ ⊢ {e1, . . . , en} : A∗ A ∈ G (6.1g)

Figure 6.2: Intensional typing of Asset Expressions

To obtain types for characteristics from the semantic type of the corresponding abstraction
variable, the function mapS : S → G has been introduced. Asset classes use types from their
base language (which is also the language a CCMS is implemented in, see section 2.1.4) as
types for the characteristics. With the set of these types G0 and the set of semantic types S a
mapping MC−S ⊆ G0 × S can be defined which provides pairwise translations. The function
mapS can then be defined more concretely as:

mapS(TS) :=





TC if ∃p ∈ MC−S | p = {TC , TS}
Asset else if TS is a simple semantic type
C∗ else if TS is a list type T ′

S ∗ and C = mapS(T ′
S)

error else

It follows from this definition that the elements of the mapping set must be unique with respect
to the semantic type.

For content handle types no distinction of list or individual types is necessary. The function
mapC : K → GC can therefore be based directly on a set of mappings NH−K ⊆ GC × K from
content handle types to content kinds:

mapC(K) :=

{
TH if ∃p ∈ NH−K | p = {TH ,K}
error else

The inverse mappings map−1
S (TC) and map−1

C (H) are defined analogously. The first maps
Asset classes to semantic types, the second assigns a content kind for use in Asset Expressions
to each content handle type used in Asset classes.

map−1
S (TC) :=





TS if ∃p ∈ MS−C | p = {TS , TC}
C∗ else if TC is a list type T ′

C ∗ and C = map−1
S (T ′

C)
error else



108 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

In the inverse, semantic types need to be assigned to all used Asset classes A and char-
acteristic types G0 in a set MS−C ⊆ S × (A ∩ G0). The inverse for content kinds is defined
similarly as mapC above:

map−1
C (TH) :=

{
K if ∃p ∈ NK−H | p = {K,TH}
error else

6.1.4 Typing Example

Consider the following Asset Expressions from the domain of political iconography as an ex-
ample:

Napoleon := (λn: Name. : Ruler)”Napoleon”: Name

StBernhard := (λe: Ruler. : EquestrianStatue)Napoleon

In AEC the expression StBernhard is typed as if the referenced expression were inlined. The
expression StBernhard can be typed in Asset classes with the following type inferrences. The
types of the contents c (java.awt.Image in all cases) have been omitted for brevity everywhere
but in the last conclusion.

∈ C

:

(

c : mapC( )

)

λe. :
(

c e : Asset → open
)

∈ C

:

(

c : mapC( )

)

λn. :
(

c n : Asset → open
) String ∈ G0

”Napoleon”: String

(λn. )”Napoleon” :
(

c n : String
)

StBernhard :
(

c : java.awt.Image e :
(

c : java.awt.Image n : String
) )

In terms of Asset classes the type of the operands of applications cannot be checked against
a declaration of the corresponding abstraction variable as those variables are typed in semantic
types. Rather, the Asset class of the concept attributes e and n, which model the explanations,
are derived based on the structure of the operand.

6.2 Converting Asset Expressions to Asset Instances

Given the type system AEC which types expressions in Asset classes, converting Asset Ex-
pressions into instances of Asset classes becomes interesting. Once a class-based conceptual
schema is available for Asset Expressions, this schema can be used in many tasks, information
integration [RB01, BSG+04] and system generation [SBS06] come to mind as examples. This
section describes a conversion function which is able to translate Asset Expressions that are
well-typed according to AEC into Asset instances. The conversion is defined piece-wise on
Asset Expressions in a manner rather similar to the typing rules of AEC .



6.2 CONVERTING ASSET EXPRESSIONS TO ASSET INSTANCES 109

Asset instances are written with square brackets to differentiate them from Asset classes.
Instances are also divided into two compartments: content and concept. Both compartments
contain concrete bindings for their members. The combination ⊕ of two Asset instances is
defined analogously to that of Asset classes as follows:




c1 m1 : T1 = v1

...
...

cp mk : Tk = vk


 ⊕




d1 n1 : U1 = w1

...
...

dq nl : Ul = wl


 =:




c1 m1 : T1 = v1

...
...

cp mk : Tk = vk

d1 n1 : U1 = w1

...
...

dq nl : Ul = wl




Concept members m, n have types T , U and values v, w. The type is defined in the corre-
sponding Asset class. It is therefore optional to repeat the type in the instance.

6.2.1 Translation Rules

The function convAE−A: AE → A converts Asset Expressions into Asset instances. The types
of the attributes and the content handle types have already been established during typing and
thus do not need to be considered during the translation.

The translation is defined piece-wise along the structure of Asset Expressions. Single con-
tents and characteristic values are converted as follows:

convAE−A(c) =
[

c
]

for a piece of content c ∈ C

and
convA−AE(v : T ) = v: mapS(T ) for a characteristic value v

Analogously, a list of plain content is translated into an Asset instance with multiple members
in the content compartment:

convAE−A({c1, . . . , cN}) =




c1

...
cN


 for pieces of content c1 . . . cN ∈ C

These three rules require that any content that is representable in Asset Expressions can also be
represented in Asset instances. If this is not the case, the corresponding type mapping should
not have been defined. The type of the expression determines which rule is used as defined in
section 6.1.3. The abstraction and application are translated in one step as the Asset instance
requires a value of the attribute.

convAE−A((λm1.e1)e2) =
[
· m1 = convAE−A(e2)

]
⊕ convAE−A(e1), e1 ∈ AE (6.2)

The name of the abstraction variable is used as the name of the member. For this rule it does
not matter whether the operand is also an Asset instance or a characteristic value.

Lists of expressions are converted into lists of Asset instances by converting each expression
individually and adding it to the list:

convAE−A({e1, . . . , eN}) = {convAE−A(e1), . . . , convAE−A(eN )}

Lifting has no effect on the structure (see its typing rule), leading to a trivial conversion:

convAE−A(e ↑ A) = convAE−A(e)



110 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

Analogously to the conversion from Asset Expression to Asset instances, the reverse direc-
tion is also defined piece-wise on structure, but on that of Asset instances. In this direction
the constructed Asset Expressions need to be equipped with semantic types as specified in the
inverse mappings for Asset classes. The function convA−AE: A → AE is defined below.

In general, a roundtrip of conversions convA−AE(convAE−A(e1)) 6= e1 will not result in the
original expression. With regard to types this is due to the lossyness of the type mapping
because several semantic types can be mapped onto a single type in AEC . Content compo-
nents can also not be represented in Asset classes or instances and are therefore lost during
translation. Nevertheless, an Asset Expression which contains components is well-typed with
regard to the AEC and can also be converted into an Asset instance. A possible remedy for
the loss of content components is discussed in the next section.

Instances which only contain content are converted to this content. An attempt to find a
semantic type based on the content handle type is made but it is expected that additional lift-
ings to more specific semantic types are necessary as there will rarely be a one-to-one mapping
of handle types to semantic types. Asset instances can use several contents:

convA−AE(




c1

...
cN


) = {c1: map−1

C (c1), . . . , cN : map−1
C (cN )}, N > 1

or just a single content:

convA−AE(
[

c
]
) = c: map−1

C (c)

Concept attributes from Asset instances are converted to pairs of abstraction and applica-
tion to model the attribute as well as the bound value. The type of the abstraction variable is
obtained from the inverse mapping of semantic types. To ensure that the applied expression is
of matching type, a lifting is used.

convA−AE(




c1 m1 = v1

...
...

cp mk : Tk = vk


) =

(λmk: map−1
S (Tk).convA−AE(




c1 m1 = v1

...
...

cp mk−1 = vk−1


))

(
convA−AE(vk) ↑ map−1

S (Tk)
)
, k ≥ 1

Values of attributes are represented as content in Asset Expressions and simply copied over.
The semantic type T of the attribute is converted through the inverse mapping for semantic
types map−1

S (T ).

6.2.2 Conversion of Content Components

Object-oriented type systems usually do not support multimedial content at all. While Assets
offer some support by explicitly accomodating content alongside its conceptual description,
they have no built-in notion of content components. However, as such components are an
important means to describe and richly connect entities in Asset Expressions, their availability
is highly desirable for a pratical conversion of Asset Expressions into Asset instances.

Conceptual Content Management offers means to combine models for different application
domains. This facility can be used to provide a meta-model of content components and to com-
bine it with the general Asset model. In this approach, content components are not made part
of the core model but added as a separate domain, see figure 6.3. The Asset class Component
allows content components to be defined based on a content in an Asset. This components



6.2 CONVERTING ASSET EXPRESSIONS TO ASSET INSTANCES 111

Figure 6.3: An Asset model for content components. The model for the Asset domain is
shown with light background, the one for content components with dark background.

uses—just as content components in Asset Expressions—Selectors to provide addressing. Dif-
ferent types of selectors are available to accomodate various kinds of content. The defined
components are based on the Asset instance whose content they use. This instance is called
the base Asset. Through a Handling (see section 4.3 on different handlings for components)
the component is connected to an Attribute of the base Asset which references another Asset
instance (the operand of the application in Asset-Expression terms).

Using this model, content components can be converted into explicit Asset instances along-
side the instances describing the entities modeled in the converted Asset Expressions. Accord-
ingly, Conceptual Content Management Systems which are generated from such a combination
of models require new content components to be introduced using the system’s usual means,
e.g., pages with forms in a web-based system. Superimposing a component’s addressing onto
its content—as prescribed in the visual notation of Asset Expressions—is generally not possible
in such a system. Dedicated user interfaces based on the Asset model of content components
can be built to remedy this situation [Uri05].

6.2.3 Convertible Expressions

Not all Asset Expressions can be converted into Asset instances. There are several restric-
tions which follow from the conversion and typing rules presented above. An expression e is
convertible under the following two conditions:

1. The expression must be well-typed in AE→. This has two important consequences which
are necessary for the conversion of expressions. The first affects types: Being member of
a class is strictly necessary for Asset instances, as the class defines the structure of the
instance. For this reason, it is important for the Asset Expression to provide semantic
types which can—via the type mapping functions—be used as a basis to construct Asset
classes. The second effect is of structural nature: Expressions which do not have a
corresponding abstraction for each application cannot be converted by rule 6.2. They are
also not well-typed in AE→.



112 CHAPTER 6: ASSET EXPRESSIONS AND CONCEPTUAL SCHEMATA

2. All explanations in e must be complete. In other words, there must be applications on
all abstractions.

Condition 1 and 2 together ensure that rule 6.2 can convert all explanations. The com-
pleteness of explanations is not covered by well-typedness even though availability of
abstractions for each application is. The former is well-typed in AE→ (it is of a func-
tion type), while the latter cannot be typed in AE→ as the typing rule for applications
(rule 3.1e on page 65) requires the operator to be of function type.

The fact that only a subset of all possible Asset Expressions can be converted raises the
question of what is lost with those expressions that cannot be handled. Condition 1 rules out
expressions that have applications not matched by any abstraction. Applied expressions explain
some aspect of the explained content. Which aspect this is, is denoted by the corresponding
abstraction (and possibly a content component). However, if no such abstraction exists, it
cannot be determined whether the applied expression has anything to do with the content and
if so, what their relationship is. Expressions of this group are therefore mis-constructed which
is also reflected by their ill-typedness in AE→.

The second requirement is that explanations must be complete. While Asset Expressions
can represent incomplete information—for example as an intermediate representation in a
workflow (see section 5.4.1) which can be completed in later steps—class-based systems gen-
erally require bindings for all attributes of a class. This is usually reflected by some kind of
new operator or function that is responsible for creating new instances in one atomic step
(see, e.g., [AC96, page 74]). Asset classes are no exception to this rule, therefore requiring
convertible Asset Expressions to supply the necessary values.



Chapter 7

Pragmatics

In the previous chapters, Asset Expressions and their type systems have been introduced.
Expressions can be generically managed in Asset Expression Systems, which focus on providing
services for a medium number of users on their personal expressions. This chapter introduces
services for type inference to aide large-scale handling of Asset Expressions. Both services use
AESs as their basis.

The first service, which is described in section 7.1, does type inference in AE→. It uses
semantic types of abstractions to infer a semantic type for the content that was abstracted
from. It uses as input the typing decisions that have been made in previous expressions by
comparing the sets of types from their abstractions. Its result is a ranked list of semantic types.
The highest ranking type can either be used automatically or the creator of the new expression
can pick a type from the ranked list.

The second service, which is described in section 7.2, infers structural types from AEC . It
creates Asset classes to type a set of Asset Expressions intensionally. The constructed classes
form a conceptual schema and can be used as a transition path from AESs to schema-based
software systems that allow uniform handling of mass data.

7.1 Type Inference for Semantic Types

The semantic type of content is assigned by the creator of the expression. In general, this se-
mantic type is independent of the explanations, compare chapter 3.3. However, it is reasonable
to assume that some expressions from an application domain, which share a common semantic
type, are likely to contain similar explanations. In a scenario where users are building new
expressions to add to an application domain that is already richly modeled by a large number
of expressions, similarities in explanations can be exploited to suggest possible semantic types
for new expressions.

More concretely, this support applies to situations where the user has created a number of
abstractions over a piece of content but has not assigned a semantic type to the content yet.
In this section, the possibilities of suggesting such a semantic type based on the signature of
the overall expression are discussed. The signature is defined as it would be for computational
functions: with a number of typed parameters—given in the abstractions—and a return type—
the semantic type of the content. Applications on the abstractions of the expression are not
taken into account as they are not part of the signature. The same is true for the names of the
abstraction variables. The problem of finding appropriate semantic types is thus mapped onto
the problem of matching function signatures based on the types of their formal parameters.
The signature of the new expression is compared to the signatures of all existing expressions
to find the most similar ones.

Traditional signature matching [MW97] takes into account exact matches of signatures as

113



114 CHAPTER 7: PRAGMATICS

Figure 7.1: Knowledge representation system. Figure adapted from [BMNPS04].

well as relaxed matches where the signatures have a certain degree of similarity. If the types of
the formal parameters from both signatures are pairwise identical, the signatures are considered
an exact match. Possible relaxations are the generalization and specialization of types, the
(un)currying of functions, and the reordering of tuples [MW97]. Depending on the application,
one can include parameter names in comparisons or consider them of low importance and thus
define equality of parameters as equality of their types.

The signature matching presented here encodes the signatures in a description logic and
employs the non-standard inferences of contraction and abduction (see, e.g., [CCC+04]) to
implement the relaxed matches. Matching is performed solely on the types of parameters. The
following kinds of matches are considered:

• Exact. Two signatures which have the same list of formal parameters without regard to
their ordering are an exact match.

• Generalization and specialization. If an existing signature has a formal parameter of more
general or specific type this is a case of generalization or specialization, respectively.

• Modified cardinalities. A parameter might occur more often or less often in an existing
signature than in the new one.

• Expansion and truncation. If an existing signature has an additional parameter, this is
an expansion. The reverse case is called truncation. Expansion and truncation can be
considered special cases of modified cardinalities, but with regard to the impact they
have on the signature, it makes sense to separated the two groups.

Generalization and specialization as well as expansion are handled by abduction, modified
cardinalities and truncation by contraction. Both inferences are discussed in section 7.1.2
below.

The presented approach works by pair-wise comparison of the new signature to the sig-
natures already present in the system. Each comparison results in a penalty that reflects the
degree of difference of the compared signatures. The approach has been implemented and
tested with different functions to compute the penalties [Mue07].

Besides the suggestion of semantic types for expressions, signature matching can also be
used in the retrieval of expressions. The idea is then that users supply hypothetical signatures
describing aspects of the sought expressions. Signature matching is used to find the expressions
that best satisfy the hypothetical signature.

7.1.1 Representation of Signatures

Description logics are heavily used in knowledge representation systems (KRS, [BMNPS04]).
These systems provide the means to set up and manipulate a knowledge base. They also offer
reasoning services on the knowledge base. The knowledge base is typically composed of a
terminology and assertions which are held in the TBox and ABox, respectively. The TBox
defines a vocabulary used in the application domain. The ABox contains individuals according



7.1 TYPE INFERENCE FOR SEMANTIC TYPES 115

Figure 7.2: Hierarchy of semantic types

to this vocabulary. For the purposes of signature matching by contraction and abduction the
ABox is not used. This general system layout is sketched in figure 7.1.

A key service provided by knowledge representation systems is determining the satisfiability
of concepts provided in a TBox. A concept is called satisfiable if there exists a model in
which the concept has individuals. Another important service of the reasoning engine is the
computation of the subsumption hierarchy of all concepts in the TBox. Both satisfiability and
subsumption hierarchies are used in contraction and abduction.

An ALEN [BMNPS04, chapter 2] logic is used to model signatures. As a basis for signa-
tures, the hierarchy of semantic types is first introduced to the terminology box of the reasoner.
This model for the hierarchy of semantic types is based on [BB04]. For each semantic type A
a subsumption relationship to its supertype S is introduced:

S ⊒ A

As it is assumed that no two semantic types are identical, appropriate disjointness rules are
added for each type A:

A ⊒ ¬Ti

where Ti are the siblings of A. These relationships are depicted in figure 7.2.
The general signature concept that is refined for all particular signatures is defined as:

sig ≡ ∃≥1hasParameter.Any ⊓ ∃=1hasReturnType.Any (7.1)

Concrete signatures are then modeled as specializations of this concept to reflect the actual
parameters and return type of these signatures by adding appropriate hasParameter relation-
ships. For each parameter a cardinality term is introduced. Thus, a signature with a single
paramter T which is a direct subtype of Any will be modeled as:

sig ⊓ ∃=1hasParameter.Any ⊓ ∃hasParameter.T ⊓ ∃=1hasParameter.T

For each parameter, two conjunctive terms occur. The first to describe the type of the paramter.
It is of the form ∃hasParameter.T for a type T . The set of these terms for a signature concept
sig is params(sig). The second term describes the cardinality of parameters of this type.
This term takes the form ∃=nhasParameter.T for a type T with cardinality n. The set of
these cardinality terms is cards(sig). The parameter terms are redundant but facilitate the
specification of the contraction and abduction algorithms.

As parameters are identified solely by their type. Their cardinality is defined as follows:
The cardinality c of a type is the sum c := cd + cs, where cd is the number of parameters that
are of this type directly, and cs the number of parameters that are of (transitive) sub-types.
The cardinality condition has to be met on each level of the semantic type hierarchy, even if no
direct parameter of this type is present. Therefore, the signature concept will always include
terms of a complete path of semantic types which extends from the top of the hierarchy to the
specific types used in the signature.

The signature concept can be described as a compact graph. This graph is a subgraph of
the hierarchy of semantic types that is annotated with the cardinality of each level as the sum



116 CHAPTER 7: PRAGMATICS

(a) Asset Expression (b) Type hierarchy

sigA ≡ sig ⊓ ∃=2hasParameter.Any ⊓

∃=1hasParameter.P erson ⊓ ∃=1hasParameter.Soldier ⊓

∃=1hasParameter.F lag

(c) Signature concept

Figure 7.3: Example of an Asset Expression signature modeled in description logic.

of parameters at or below this type. For each parameter type, it shows all types on the path
to the topmost type Any. Using the example from figure 7.3(a) this graph is:

In this example, no parameter is of a supertype of another parameter type. Therefore, the
annotation of inner nodes is the sum of their children. Figure 7.3(c) expresses the corresponding
signature in the DL-based model.

In addition to the direct model of a signature, a model for the callability of this signature
from a context can be defined. To call a function with a signature

∏
i(∃=ni

hasParameter.Ti ⊓
∃hasParameter.Ti) the calling context has to have available at least ni parameters of each type
Ti. This can be expressed separately in a model for the callability which is very similar to the
signature model. The difference is in the laxer restrictions on the cardinalities that call for a
lower bound instead of an exact number:

∃hasParameter.Ti ⊓ ∃≥ni
hasParameter.Ti

are the conjuncts for each parameter type Ti.

7.1.2 Reasoning for Signature Matching

Using the signature and callability models presented above, callability concepts for all Asset
Expressions can be defined in the TBox of the KRS. Given these concepts, the task is to match
the signature of a new expression against each of the callability models. If the match is an
exact one, this task is simple because it maps directly to the service for the computation of
the subsumption hierarchy in the KRS. If inexact matches are also desired, more sophisticated
inferrence services have to be employed. How this is done will be described in this section.

Below the signature of the newly created expression is called the demand signature Cd, the
callability models which are already available in the system are called the supply signatures



7.1 TYPE INFERENCE FOR SEMANTIC TYPES 117

Cs. This is analogous to the terminology of [CCC+04, CNS+04]. In the presented scenario
the supplies are fixed because they correspond to defined Asset Expressions which cannot be
changed as a result of the matching process. Therefore, contraction and abduction modify
the demand Cd. Contraction relaxes the cardinalities of parameters (potentially up to the
point of removing the type alltogether from the signature), while abduction adds hypothetical
conjuncts to the supply. In literature the concept contraction problem is sometimes defined
as modifying the supply. However, the problem is symmetric and can be defined exchanging
supply and demand [CNS+04].

Using concept contraction and concept abduction, signatures can be found which are similar
to the demand signature Cd. The degree of difference is described by the penalty π which
increases for each modification that has to be made to the demand in order to match the
supply. The result of a match is a list of all callability models (and attached to them Asset
Expressions) that is ordered by the respective penalty.

The examples in this section use the supply signatures s1 and s2 which are described by
the following callability models:

s1 := s2 :=

Signature s1 has two parameters, one of type Person, one of type Soldier. The second signature
s2 has four parameters one Person, one Soldier, one Building, and one Flag. The demand d is a
refined version of the signature shown in figure 3.7:

d :=

Contraction

A signature from the supplies might contain parts that are contradictory to the demand sig-
nature. These parts are removed by concept contraction of the demand in order to discover
which part of the demand can be kept as it is compatible with the supply. More specifically, a
concept contraction problem [CNS+04] (CCP) is to split the demand Cd into a pair of concepts
K and G such that the conjunction of K and Cs is satisfiable:

CCP : sat(K ⊓ Cs), Cd = K ⊓ G

K and G are called the keep and give-up, respectively. The goal is to find conjuncts K that
are compatible with the demand. A penalty is calculated depending on the give-up G.

Concept contraction has been applied to several other areas, for example the matching of
user profiles [CCC+04]. While the algorithm is essentially the same in all application domains,
it has to be adapted to the particular model of concepts to be contracted. Especially important
is the design of a custom penalty function.

The purpose of contraction when applied to models of signatures is to remove contradictions
by adjusting the cardinalities appropriately. Other reasons for unsatisfiability of K⊓Cs cannot



118 CHAPTER 7: PRAGMATICS

(a) Demand (figure 7.3)

(b) Keep and Supply s1

(c) Keep and Supply s2

Figure 7.4: Two examples of concept contractions. In the first example an inner cardinality
does not match the supply. In the second example the total number of cardinalities is wrong,
but the cardinalities of the leaves remain in the keep.

occur as there is no way to define “un-parameters” in signatures which would explicitly forbid
a parameter of a certain semantic type to be present.

The concept contraction algorithm works on the conjuncts that define the cardinalities in
the signatures. For each pair of conjuncts from demand and supply that describe the same
type, the compatibility of the cardinalities is checked. If the terms are contradictory, the term
from the demand is removed and the penality increased accordingly. The contraction penalty
πC takes into account the relative difference between the cardinalities in the demand nd and
supply ns for the given type. It is therefore defined as a function of these cardinalitites:

πC(ns, nd) :=
ns − nd

nd

(7.2)

Intuitively the idea is to define in relative terms how far the demand is from the supply, i.e.,
how large a change would be necessary on the demand to meet the supply.

Using this penalty, the concept contraction algorithm is given in pseudo code below. It
works on a demand Cd and a supply Cs by comparing cardinalities on types that occur in
both:



7.1 TYPE INFERENCE FOR SEMANTIC TYPES 119

foreach cd := ∃=nd
hasParameter.Td ∈ cards(Cd) do

foreach ∃≥ns
hasParameter.Ts ∈ cards(Cs) do

if Td = Ts and nd < ns

remove cd from Cd

π := π + πC(ns, nd)
removeSuperCards(K)

end
end

end

The cardinality of a node always has to be at least the sum of its children. The function
removeSuperCards(K) therefore removes the cardinality terms for all super types to prevent
unsatisfiable models. Two examples of concept contraction are shown in figure 7.4. In the
first example (figure 7.4(c)) the top-level cardinalities as well as the cardinality of Person in
the demand contradict the supply and are therefore removed. In the second example the top-
level cardinality happens to match and is therefore kept, even though the number is obtained
differently in supply and demand. Since there is one Grenadier there is also one Person. However,
the supply calls for at least two, the term is thus removed from the demand. During contraction
only the cardinality terms are removed.

Abduction

Concept contraction has split off a keep K from the demand signature, such that the conjunc-
tion of K and the supply is satisfiable. There might, however, be parameters in the supply
that are not present in the demand. It is the aim of concept abduction to find a hypothesis
that—when added to the demand conjunctively—makes the supply subsume the demand. In
the model of signatures used here, the subsumption of the demand by the supply translates
into the possibility of making a “function call” with respect to the signature of the supply by
using the parameters from the demand. Some of the parameters that are necessary to do this
might be missing, they are added during abduction.

More formally, the concept abduction problem [CNS+04] (CAP) of a supply Cs and a keep
K is:

CAP : Cs ⊒ K ⊓ H

Where H is the hypothesis to be added to the keep. Intuitively, the supply requires a parameter
that the demand does not yet provide. This parameter is hypothetically added to the demand
as further investigation might reveal that it indeed exists in the context of the demand. In an
Asset Expression this means that an additional abstraction over the content is sensible but has
not been made.

Similarly to concept contraction, a penalty is also applied in this case for each hypothetical
parameter. The penality value πA for an additional term that has the cardinality ns on a supply
that has nAny parameters is calculated as (nd is the cardinality on the demand as before):

πA(ns, nd, nAny) :=
ns − nd

nAny

(7.3)

If the term did not exist in the demand nd is 0.
The hypothesis H can then be calculated for a supply Cs = . . . ∃=nAny

hasParameter.Any . . .
and a keep K as follows:

foreach ps := ∃hasParameter.Ts ∈ params(Cs) do
if there exists pd := ∃hasParameter.Ts ∈ params(Cd)
then

if not cs := ∃≥ns
hasParameter.Ts ∈ cards(Cs)

then



120 CHAPTER 7: PRAGMATICS

(a) Demand (figure 7.3)

(b) Keep with Hypothesis and Supply s1

(c) Keep with Hypothesis and Supply s2

Figure 7.5: Two examples of concept abduction. The hypotheses are added to the keeps with
bold frames. In the first example, a computed cardinality has to be adjusted as a result of a
hypothesis.

add cs to H
π = π + πA(ns, nd, nAny)
fixCards(K)

end
else

add ps to H
add cs := ∃≥ns

hasParameter.Ts ∈ cards(Cs) to H
π = π + 2πA(ns, nd, nAny)
fixCards(K)

end
end

Some of the cardinalities in the signature model of the keep are computed as the sum of
their children. These cardinalities reflect the overall structure of the signature and need to be
kept up-to-date during abduction. This bookkeeping is done in fixCards(K) which adjusts the



7.1 TYPE INFERENCE FOR SEMANTIC TYPES 121

cardinalities bottom-up to account for potential violations introduced in the last abduction
step. As wittnessed by the example in figure 7.5(b) these violations do not necessarily happen.

All parameter terms in the supply are checked for existence in the keep. For parameter terms
which are also found in the keep, the next step is to ensure the existence of the corresponding
cardinality term. It is guaranteed by concept contraction that if a cardinality term exists in
the keep, its cardinality is compatible with the supply. If no cardinality term is found in the
keep, the term from the supply is added and the penalty increased by πA accordingly.

For parameters which are not present in the keep at all, both the parameter and the
cardinality term from the supply are added. The penalty applied in this case is twice the
penalty πA.

Figure 7.5 shows the results of the abduction phase for the two examples from figure 7.4.
The hypotheses are added to the keeps in bold. The first example has become structurally
very similar to the supply, just one parameter is modeled more specifically in the demand. The
second example required an adjustment of computed cardinalities which is shown with dashed
frame. This is the case as the Flag parameter could be retained (it does not contradict anything
from the supply).

7.1.3 Example

This section presents an example of semantic type inference by contraction and abduction. Due
to space constraints, the set of supplies is very small: just four expressions. The example is
based on the hierarchy of semantic types shown in figure 7.6. The figure should be considered
to show an excerpt from a larger, realistic type system. Abbreviated expressions for the sup-
plies are shown in figure 7.7 in the left column. The expressions omit all applications, which
are likely to exist on real-world supplies, as these are not taken into account by contraction or
abduction. The right column of figure 7.7 shows the callability models of the supplies as intro-
duced above. The supplies are matched against a new expression shown in figure 7.7(e) along
with its signature model. The content in expression 7.7(e) has not been assigned a semantic
type yet. It is the purpose of semantic type inference to suggest appropriate candidates.

Figure 7.8 shows the results of contraction and abduction on the demand for each of the
supplies. The graphs in the left column are a combination of those used previously to illustrate
contraction and abduction separately. As before, the demand is modified as the supplies already
exist and cannot be changed to match a demand. In the demand, cardinalities removed by
contraction are crossed out. Terms added to the hypothesis by abduction are shown with bold
frame. Cardinalities which had to be adjusted to keep the model consistent are crossed out
with a single line. The new cardinality is shown in a dashed box. The corresponding penalties
are also shown.

The penality πa is computed as follows:

πa = 1
1

30
=

6 − 5

5
removal of cardinality on Any

+
6 − 5

6
new cardinality for Any

+ 2 ·
1 − 0

6
introduction of Vehicle

+ 2 ·
1 − 0

6
introduction of MilitaryVehicle



122 CHAPTER 7: PRAGMATICS

Figure 7.6: Semantic type hierarchy for inference example. Supertypes are shown above their
subtypes.

The penality πb is computed as follows:

πb = 1
1

2
=

2 − 1

1
removal of cardinality on Object

+
2 − 1

5
new cardinality for Object

+ 2 ·
1 − 0

5
introduction of Painter

+ 2 ·
1 − 0

5
introduction of Animal

The adjustment for cardinalities for purposes of model consistency (on Any, Person, and Artist;
dashed boxes) does not incur a penalty.

The penality πc is computed as follows:

πc = 1
2

3
= 0 nothing changed in contraction

+ 2 ·
2 − 0

3
introduction of Ruler

+ 2 ·
1 − 0

3
introduction of Painter

+ 2 ·
1 − 0

3
introduction of Emperor

The penality πd is computed as follows:

πd = 1
4

5
=

1

2
removal of cardinality on Object

+
1

2
removal of cardinality on Building

+
2 − 1

5
new cardinality on Object

+
2 − 1

5
new cardinality on Building

+ 2 ·
1 − 0

5
introduction of Painter

As πa is the lowest penalty, the expression in figure 7.7(a) has the signature that is most
similar to the demand. The semantic type Victory is therefore the best candidate for a typing
of the content in figure 7.7(e).



7.1 TYPE INFERENCE FOR SEMANTIC TYPES 123

(a)

(b)

(c)

(d)

(e)

Figure 7.7: Four Asset Expressions (a) through (d) as a basis for the semantic the type infer-
ence example. One new expression (e) for which a semantic type is to be inferred. Expressions
are shown along with their signature or callability model expressed as an annotated sub-tree of
the semantic type hierarchy. The annotated number is the total number of parameters of the
annotated type and its children.



124 CHAPTER 7: PRAGMATICS

Demand Supply

πa = (1

5
) + (1

6
+ 2

6
+ 2

6
) = 1 1

30
Expression 7.7(a)

πb = (1

2
) + (1

5
+ 2

5
+ 2

5
) = 1 1

2
Expression 7.7(b)

πc = (0) + (4

3
+ 2

3
+ 2

3
) = 12

3
Expression 7.7(c)

πd = (1

2
+ 1

2
) + (1

5
+ 1

5
+ 2

5
) = 1 4

5
Expression 7.7(d)

Figure 7.8: Results of contraction and abduction in the semantic type inference example.
Modifications to the demand are shown in the type tree. marks cardinalities removed by
contraction, bold boxes mark hypothetical terms from abduction, adjusted cardinalities are
indicated by dashed boxes . The penalties π are shown as the sum of contraction and abduc-
tion penalties (πC) + (πA).



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 125

7.2 Type Inference for Intensional Types

The class-based type system AEC presented in chapter 6 lays the foundations to create a
conceptual schema of an application domain that is modeled in Asset Expressions. When new
expressions are created that call for a different schema—for example due to the inclusion of the
personal opinion of a user or a better understanding of the application domain—a new schema
can be created via AEC to reflect these changes. Two challenges remain:

1. Summarizing the numerous individual classes which are used to type each expression
into a coherent conceptual schema of the application domain. If the underlying Asset
Expressions are totally uniform, this task is trivial, but one can generally not expect such
conditions.

2. Controlling the evolution of the conceptual schema in successive iterations by helping
users to understand the impact of their action on the schema. This is important because
the conceptual schema is the basis for an information system which is populated with
data. This data must certainly remain accessible across evolution steps, but many changes
to the schema are conceivable that limit such access.

To meet these two challanges a process to support schema creation from Asset Expres-
sions will be described in this section. It is called the User Centric Schema Creation Process
(UCSCP). While the process allows users to make changes to an open schema and have the
information system react dynamically to those changes in the spirit of Conceptual Content
Management (section 2.1.4), it helps users by guiding their modeling decisions. It does so
by ensuring that schema changes are well-founded (i.e., based on a substantial number of in-
stances) and compatible with the existing schema. Practical experience—a brief account is
given in the next section—has shown that these are central issues when domain experts model
an application domain.

7.2.1 Lessons Learnt

Conceptual content management systems are considered open if they allow their users to work
with a schema that matches the particular user’s needs. Therefore, users must be able to
modify the schema according to their requirements at any time. Such schema modification
abilities are most useful if they have an immediate effect on the system. In particular it is
felt that a manual development round-trip—consisting of writing a change request, a brief
analysis, design and the subsequent implementation—is not appropriate as it causes a too high
latency for the user experience to be truely open. Instead the system itself must be dynamic,
meaning that it can adapt to the schema modifications of users on its own and almost in real-
time. It is dynamics that put users in the position to flexibly model the application domain
according to their needs and opinions while remaining in a schema-based system. Users can
make modifications successively, improving the schema as they move along. This is a large
benefit for many user groups who are not at ease with abstracting from an application domain
to create a complete domain schema before they can fill the schema with instances.

In an application project a high number of reproductions of documents from archives were
to be collected to enable future research on the domain of art history. Some more details on
the project and a brief introduction to the application domain can be found in chapter 8. Due
to the large amount of data which was to be expected, an information system was set up to
support the collection process. One of the first tasks of the project was therefore to create
a conceptual schema to describe the documents. An initial survey of available documents
made clear that these documents were quite heterogenous. Therefore, a number of document
classes were introduced. The creation of these classes proved difficult as on the one hand the
involved computer scientists did not fully understand the nature of the documents and were
therefore not able to conceptually capture all important parts. On the other hand the creation



126 CHAPTER 7: PRAGMATICS

Figure 7.9: A class from the GKNS project and the various forms it would have been in, had
the users had full openness and dynamics. The arrows denote different branches of evolution.
New attributes are shown in bold, removed attributes are crossed out.

of conceptual schemata is not amongst the usual tasks for art historians who thus had trouble
abstracting from a large set of documents to create a joint schema.

After some discussion an initial schema was agreed upon and a prototype of a data entry
tool developed that worked according to this schema. The idea was then to let the domain
experts input some documents to evaluate how well these could be mapped with the given
schema. The schema was then expected to be modified according to the advice given by the
domain experts. The schema was therefore developed in an open and dynamic way. Openness
was not on an individual basis, as the result had to be a general schema for the whole of
the application and dynamics was deliberately not immediate to force the group to reflect on
changes proposed by members.

This experiment exposed two interesting points:

1. As the propositions for changes were made by individuals, they always reflected a personal
opinion. Had the process been open and dynamic for each of the users, these changes
would have immentiately caused a new and personalized variant of the system to be
created. However, it was obvious that already after one month these variants would have
been so different schematically that re-integration as well as exchange of data would have
been impossible (compare the personalizations shown in figure 7.9). This prompts for
some control over openness and dynamics which alerts users to such problems. After all,
most information systems—and conceptual content management systems put particular
emphasis on this—need to allow users to collaborate. This is the primary reason why
much effort is spent to implement personalization in a way that retains access to existing
data instances [RR98, SBS06].



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 127

2. Changes were usually requested on the basis of single documents. A common case for this
was the appearance of a document which required a conceptual model slightly different
to what was available to be described appropriately. Such a new document was then
met with the proposition of a conceptual model ideal for it and this new model was
proposed as a change to be integrated into the new schema. Little regard was given
to the appropriateness of this new model in general or in the context of other existing
documents. Had the process been truly open and dynamic, a high degree of variation
would have been observed (figure 7.9) between such personalized schemata and their
predecessors. It can be observed that personalization was often driven by a small number
of—usually a single—sample instances. To avoid problems with representing existing
instances, personalization should be put into context of a larger amount of instances.

The unrestricted availability of openness and dynamics places a large responsibility on the
user. Their proper use thus requires a high degree of skill in conceptual schema creation which
should not be assumed to be present with domain experts [SM99]. The UCSCP therefore
aims at sufficiently guiding its users to allow domain experts to usefully personalize conceptual
schemata without having to understand their theoretic foundations or having a background
in domain modeling. Additionally, it should be stressed that the conceptual schema was not
understood by the domain experts when presented in an abstract fashion (e.g., in UML class
diagrams). This is an observation also made by others [SM99, GWG06]. Transparency of
the conceptual schema is, however, vital in order to receive useful feedback from domain ex-
perts [MK98].

7.2.2 Process Support for Openness and Dynamics

As discussed above, the following observations can be made about the involvement of domain
experts in conceptual modeling:

1. Domain experts find it helpful to base their modeling descisions on examples. Some do
this to such a high degree that it limits abstraction.

2. When deriving modeling decisions from examples, often too few examples are considered.

3. Conceptual modeling by domain experts carries a high risk of modeling errors in gen-
eral [AW85] due to unfamiliarity with the concepts of modeling.

A proposed remedy [AW85] to these problems is the involvement of modeling experts. Unfor-
tunately, this is not a feasible solution in open and dynamic systems. While the involvement
of a modeling expert at least partially maintains the aspect of openness, that of dynamics is
much dimished as each evolution step requires the interaction with the modeling expert who
is usually not available at all times and on short notice.

To alleviate the situation Asset Expressions can be used as a flexible means to entitiy
modeling. Only few modeling concepts have to be understood to create useful expressions in
an application domain. These expressions can then be used by the AES to help its user to
arrive at a conceptual schema of the domain described by the expressions. Together with a
facility to import instances from an existing CCMS, the process can be used to support open
model changes and dynamic system evolution in the CCMS. Without CCMS, the process can
be used to create a conceptual schema, which then could be used to bootstrap any information
system, for example a CCMS.

Contemporary methodologies for schema creation in software engineering assume the pres-
ence of a modeling expert to run the process. This expert works with someone knowledgeable
about the application domain. In software development, the interaction between the two
commonly is found in the requirements analysis phase during software development [DMFP05,
MJF03, RMRD05, FKM04]. To support requirements analysis “structural approaches and own
modeling languages have been proposed, but do not enjoy wide-spread adoption in practice”



128 CHAPTER 7: PRAGMATICS

([RP06, D13.5], author’s translation). A major hinderance for the adoption of such languages
is the difficulty of obtaining sufficiently formal statements of requirements.

There are models [TMP98] for interaction which make explicit how the modeling expert
can obtain information relevant to modeling from the domain expert. The particular approach
in [TMP98] is based on natural language descriptions from the domain expert and the modeling
expert’s ability to build formal models from these. A conceptual predesign phase [MK98] can
be used to bridge between natural language texts and a conceptual model. Carrying out this
mapping directly is a very complex task. This task is simplified by a dedicated predesign phase
during which a minimal model is constructed. Parts of the predesign model can be constructed
automatically from scenarios described in texts [FKM04].

Several approaches exist in literature that are related to the problem of extracting concep-
tual information from samples. The problem appears in many variants which have in common
that information, which was created in an unstructured manner, needs to be captured in an
implementation-level schema or conceptual model.

A text-based approach for semi-automatic ontology extraction from web pages [SCC05]
relies on the pre-categorization of the documents. Documents are analyzed to extract rele-
vant domain concepts. By means of the documents, these concepts are then clustered into a
structured representation of the domain.

Similar to the UCSCP in its iterativeness is an incremental schema construction pro-
cess [Pro97]. Its key idea is to treat schema construction as a sequence of model evolutions
starting from a rough conceptual model and ending with an implementational database schema.
The process requires modeling experise from the user as it is largely up to the user to arrive
at the proper conceptual model to start the process.

While the UCSCP copes without a modeling expert to enable openness and dynamics,
others [SGU02] aim to reduce the involvement of the domain expert. The idea is to encode
general knowledge in a knowledge base which assists the modeling expert in building the
schema. The modeling expert is asked to classify each term that appears during modeling
in the ontology of general knowledge thereby giving the system hints about the application
domain. An application of this approach to business system modeling [SCD+97] builds a
knowledge-base about the application domain which organizes common facts. While the user
builds the schema, a business reasoner makes recommendations on how to improve this schema.
Structural comparison is used to identify equal or related descriptions.

The UCSCP to create a schema from Asset Expressions is shown as a UML activity diagram
in figure 7.10. It consists of four phases which are shown with different backgrounds in the
diagram. During phases I. and III. user interaction is required to create or import expressions
as well as to give feedback on the generated schema. Phases II. and IV. are purely automatic
construction of the schema and generation of the matching system, respectively. In the following
the term “user” always refers to the domain expert.

The process contains three iterative elements. In the inner-most loop the user directly
adjusts the presented schema (loop between phases III. and II.). This is a very direct way of
giving feedback. A little less direct is the loop between phases III. and I. that allows the user
to influence the schema by modifying the expressions that the schema creation is based upon.
Finally, there is a loop from phase IV. all the way to the beginning of the process. This loop
represents an open schema modification in a CCMS.

The UCSCP focuses on determining the structure of the application domain and docu-
menting it in a conceptual schema. Behavioral aspects of a system supporting work in the
application domain are also of interest. Means to involve the end user in their identification
are available in the form of a process which extracts behavioral information from textual de-
scriptions [FKM04]. It is based on a linguistic analysis of the description and carried out in
the predesign model outlined above. Besides the goal of determining system behavior a key
difference to UCSCP is that the approach relies on purely textual descriptions.



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 129

Figure 7.10: An activity diagram of the User Centric Schema Creation Process to guide users
in their use of openness and dynamics. It works in four phases: (I.) aquire instances, (II.)
automatically create schema, (III.) collect and incorporate user feedback, and (IV.) generate
system from schema. Feedback loops are shown as bold arrows.



130 CHAPTER 7: PRAGMATICS

Figure 7.11: Generation of an information system from Asset Expressions by construction
of a conceptual schema which models the Asset Expressions.

Phase I: Obtaining Initial Instances

The first phase is about obtaining Asset Expressions which are used as the basis for schema
creation. There are two possible sources for these expressions: new creations by the user or
imports from an existing CCMS. In the first case, the user has previously used the facilities of
the AES to model entities with expressions and now selects from these expressions those that
the schema is to be created from. In the second case, a number of instances are selected in a
CCMS and the conversion from Asset instances to Asset Expressions as defined in section 6.2 is
used. Either way, the result should be a comprehensive set of expressions from the application
domain. Choosing appropriate expressions which best reflect the application domain is one of
the central accomplishments of the user in this process. Expressions should be chosen such
that the application domain is covered to a high degree with as few expressions as possible.
However, there is a trade-off between the number of expressions and the ease of model creation:
If only few expressions are used and among those expressions the ones that should be modeled
by a single class are structurally diverse, schema creation becomes difficult.

To even out unnecessary structural diversity of related expressions, it is recommended
that the user reviews the expressions after import or creation. This review does not have to
take place in the first iteration but can be deferred until later to remove unwanted effects of
structural diversity on the created schema.

If the process is used in support of open modeling in a CCMS, the user has the opportunity
to make personal changes to the imported expressions (which still reflect the original schema)
with the means of the AES before schema construction.

Phase II: Schema Construction

The second phase is that of automatic schema construction. The system infers a schema based
on the given expressions. This is done in two steps: All expressions are typed in AEC resulting
in one Asset class per instance. As this is usually not the desired schema, the individual Asset
classes are then analyzed structurally to find equivalent classes and to place them in a class
hierarchy. The second step also considers Asset classes imported from an existing schema in
the case of open model evolution.

The core of the second phase are therefore schema matching and inferences problems. As
these are common problems, there is a large body of literature [AS83] on the subject. Thus
the discussion here will be brief and will focus on aspects particular to this process.

Structural inference from instances has been considered in a variety of environments. Exam-
ples include object-oriented classes [PS91], semi-structured data in general [GW97, WMBS04],
and XML documents in particular [GGR+00, NJ02, WS03, BSG+04]. As the more recent
literature on XML documents is usually based on XML Schema which uses structural types
for elements, its findings are also relevant here.

In general, several operations on the model have been identified [Ber03]. These include:
Match which computes a mapping between two models, diff which determines the differences



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 131

between two models, and merge which merges two models by collapsing elements that are equal
in both to one element in the new model.

Schema inference algorithms usually work by first building a data-structure that accomo-
dates all sample instances presented to the algorithm. In a second step this data-structure
is then simplified to remove redundancies. Many approaches also apply generalization heuris-
tics. In the UCSCP, the data-structure is the set of all Asset classes which are created during
the initial typing of instances in AEC . Simplifications and generalizations for these classes
are described below. The most important means to simplify the schema is the aggregation of
equivalent classes (a merge operation). The process takes a conservative approach to aggre-
gation and performs it automatically only for classes that are identical. Two classes from the
schema can be in several relationships which prompt different reactions from the system:

• Identical classes: Two classes are considered identical if all their attribute names as
well as the attribute types are equal. In this case the process reacts automatically and
aggregates all instances from both classes under a common class. This constitutes a
match and merge operation.

• Inheritance: A class introduces additional attributes but is otherwise identical to another
class. The process automatically puts the two classes in an inheritance relationship. In
this case it is important to use the most specific super class, i.e., the class with the least
differences, to obtain a well-structured class hierarchy. The diff operation plays a key
role in determining inheritances.

• Type match: Two classes have attributes of exactly the same types but the attributes have
different names. While some inference or matching algorithms (usually fully automatic
ones) consider this a match, in this process the two will only be aggregated with explicit
permission of the user. Especially in sparse models (where classes have few attributes)
coincidental type matches are very common (see, e.g., figure 7.12). Type matches are
related to signature matches presented in section 7.1 in that they compare a set of types.
However, a type match only occurs if the sets of types are identical whereas semantic
type inference uses inexact signature matches.

It is not necessary to ask the domain expert directly whether two classes should be merged.
Instead, two sets of Asset Expressions are shown and the question to the domain expert
is whether these should be treated together or separately by the system. The effect of
this decision can be observed in the prototype system constructed in the next phase.

• Inheritance Orphan: This is a special case of inheritance in which the subclass has only
one (or very few, depending on the overall number) instance. Such a class is only kept in
the schema with explicit permission of the user who is asked to supply further extensional
backing for the class. If no additional instances can be found—either among the instances
of the superclasses or as new expressions—it is recommended to remove the class.

Similar to the previous case, the question to the user is based on two sets of Asset
Expressions. The first set contains the expressions from the super-class, the second the
few instances from the orphan class. It is then up to the user to decide whether the
difference in the few expressions warrants their special treatment. If the user determines
this not to be the case, the system removes the additional abstractions. This has two
purposes: to make the expressions typable in the super-class and to remind the user of
the consequences of the decision, i.e., to make explicit the loss in information.

The first three cases have also been identified for matching of inensionally defined ontolo-
gies [HG02] as used for the creation of federated schemata.

Each of the classes needs a name to present to the user in the next phase. If all expressions
of a class have a most specific common semantic type that is not Any, the name of this semantic
type is used as a name for the class. It may be necessary to disambiguate class names, e.g.,



132 CHAPTER 7: PRAGMATICS

(a) Common class for structurally equivalent expres-
sions.

(b) Class split in two.

Figure 7.12: Expressions with coinciding structure and their allocation to classes.

by adding appropriate suffices such as numbers. Classes for which the most specific common
semantic type of all expressions is Any use “Class” plus a unique suffix as their name. If the
process is used to support an incremental model evolution step, the number of new classes and
attributes is typically low compared to the size of the original schema. It is then much easier
to automatically create an appropriate schema requiring little user feedback in the next phase.

When automatically creating schemata either by inference from instances or other means,
one is typically confronted with the problem of measuring the quality of the solution. Some
approaches to the “goodness of fit” problem are discussed in [AS83]: The simplicity of the
schema, the tightness of its fit on the sample instances, as well as several approaches to mix these
measures. An important limitation of all measures is that they can only compare the schema
against the available sample instances. However, while those instances might have been chosen
to be as representative as possible, the intention of the user is usually not to receive a schema
that describes only the given instances. Rather, the expectation is that the created schema
is somewhat more general than the tightest fit over the samples. A good example of this are
cardinalities: Sample instances will always describe a finite number of instances, even if there
is no upper limit for the cardinality of an attribute. Schema creation algorithms which receive
incremental feedback from users encode such expectations in heuristics [GNA99, BSG+04] in
the hope that wrong guesses will be corrected by feedback. Some less quantitative quality
measures are discussed in section 7.2.4 when the quality of the schema that is generated in
UCSCP is assessed.

Phase III: Interaction with the Domain Expert

In the third phase, the user has three opportunities to influence the created schema: by answer-
ing questions from the system that arose in phase II., by working on the sample instances which
are the basis for the created schema, and by modifying the schema directly. Also compare the
feedback loops in figure 7.11.

Answering questions from the system about schema construction has a direct effect on the



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 133

schema and can influence multiple classes at a time (as the same problem, e.g., an ambiguous
naming, might occur more than once). The system reacts by adjusting the schema according
to the given hints.

For each class the user can inspect the instances which back it. Any undesired classifica-
tions revealed in this inspection can be fixed on an individual basis by modifying the affected
instances. When all desired modifications have been made, phase II. is re-executed to yield the
corresponding changes on the schema.

Modifications on individual instances can, however, be cumbersome especially if the problem
affects multiple expressions. Direct manipulation of the schema is therefore also possible.
When the user makes modifications on schema level, the system modifies the corresponding
expressions accordingly.

A common case in which modification on schema level is used are expressions which have
been collected in a common class because they are accidentially very similar in structure but
unrelated semantically, figure 7.12 gives an example. Such a situation is likely to occur in parts
of the schema which are only of minor interest in the application domain and therefore not
richly modeled. The user can explicitly divide the expressions of the invalid class into several
groups, for example along distinguishing semantic types of the expressions. This is called a
split operation. The split operation does not require modifications to expressions, instead, it
introduces explicit typing information for some expressions.

In the other direction, an explicit merge operation is also possible. Two classes that the
user deems identical, but that technically are not, are merged in this operation. The differences
between classes can be in attribute names, their types, or even in the structure of the whole
class. In the first case, the user is required to equate attributes from both classes in a simple one-
on-one mapping. The system modifies the abstractions on the respective instances accordingly
to alert the user to the consequences of this merge. If the user chooses to modify the type of
an attribute in order to merge two classes, this modification can be to a more general type (all
expressions remain well-typed due to the substitutability of specific types for general ones) or
to a more specific type. In the latter case the user has to supply proof that is type modification
is valid by acertaining the more specific type for the applied expressions. This requires the
modification of those expressions. Introductions of new attributes cause the system to introduce
corresponding abstractions on the affected expressions. These expressions are then only well-
typed in AEC after these abstractions have been met with applications. Thus, extensional
proof is required for new attributes. The modification of an attribute’s type to an unrelated
type is treated as the introduction of a new attribute.

Human-computer interaction can be understood as the reaction of the human user to visual-
ization on screen by the computer [BCM99]. Possible reactions of the user have been described
above, leaving the visualization to trigger those reactions. The visualization’s task is to inform
the user of the schema that was created from the supplied instances. An obvious possibility is
therefore a graphical representation of the Asset classes similarily to UML class diagrams for
example in the notation used in figure 7.12 and chapter 6. The domain expert can make all the
modifications to the schema in this visualization. As it allows rather direct interaction, this
visualization should certainly be available in a system which runs the schema creation process.
A survey of visualization techniques useful in ontology development can be found in [Ng00].
Some of the techniques might also be useful in building a sophisticated visualization that helps
the user in understanding large amounts of expressions and the corresponding classes. One
such technique are landscapes that provide an overview of the closeness of elements.

However, it should also be recognized that semi-formal diagrams are inappropriate for many
domain experts. To understand them, the user has to be familiar with modeling concepts such
as inheritance. This is in practice often not the case. In an application project (see section 7.2.1
and chapter 8) class diagrams were found to be a tool largely useless for communication with
domain experts as their semantics were not understood even towards the end of the project.
Others [SM99] report similar experiences.



134 CHAPTER 7: PRAGMATICS

Figure 7.13: Setup of a component for schema evolution. Instances according to the original
schema are transformed to the new schema. New instances are stored in a dedicated client
module. Access to both is mediated such that an application based on the mediation module
only sees instances according to the new schema.

What was, however, a suitable means for discussion was the user interface generated from
the conceptual schema. It was only after the availability of this interface that the consequences
of modeling decisions were understood and some decisions could be identified as ill-founded.
Accordingly, the schema creation process can communicate with the user via prototypical user
interfaces. This idea is also pursued in [PMM05] where a user interface prototype is created
directly from the model. Prototype systems are used in software development in general not
only to provide feedback to the user long before an initial version of the system has been built,
but also to motivate users to participate in development [Rup04, 3.3.5].

By means of dynamic generation of CCMSs, prototypical user interfaces can quickly be
provided to the user. To this end, a small CCMS is generated which is composed of two
modules: a server module providing the user interface, and a client module holding the data
that the schema was created from—converted Asset instances based on the sample expressions.
This system is generated from the current state of the schema and therefore always reflects the
user’s latest changes. This allows quick evaluation of the feasibility of these changes.

The prototype system is read-only with respect to the schema. While new versions of the
prototype are available upon each schema modification, allowing the user to make schema
modifications—such as the introduction of new attributes—directly in the prototype again
causes the one-instance-problem described in section 7.2.1 above. Assume that, e.g., the pro-
totype is displaying a web page that shows a detailed view of an instance. A request for an
additional attribute on this page is likely to be founded in this instance only. Conversely,
checking many pages after a new attribute has been introduced by the process allows the users
to evaluate the attribute’s feasibility. Therefore, the prototype is used for presentation only.

Phase IV: Creation of New Conceptual Content Management System

When the domain expert is satisfied with the created schema and the presented prototype, the
process enters the final phase IV. This phase is again fully automatic and makes heavy use of
dynamic system generation. The system that is compiled from the schema this time is a full
system not a simple prototype built from two modules. The structure of the full system is based
on a component configuration appropriate for the task at hand (see section 2.1.4 on component
configurations). If the process resulted in a modified schema, the component configuration is
augmented with the modules to accomodate this new schema. This is done with the schema
evolution pattern [SBS05] shown in figure 7.13 which lifts the module interface to the new
schema. On top of the mediation module, additional modules reside to realize application-
specific functionality such as user interfaces or distribution.



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 135

Figure 7.14: Combination of AES and CCMS to support open and dynamic schema evolution
in CCMS. Researcher models domain in Asset Expressions in the AES with complete freedom.
Insights are carried over into the CCMS for all users by means of the UCSCP.

7.2.3 System Integration

The execution of the UCSCP can result in a new or updated CCMS. At this point the lifecycle
of the involved AES that was used to support the UCSCP can end. However, this need not
be the case. The AES can continously exist besides the CMS as is shown in figure 7.14. The
AES provides its users with a view on the information in terms of Asset Expressions. Available
expressions can either be stored in the AES directly (through the means described in chapter 5)
or be loaded from the CCMS. In the latter case, Asset instances need to be converted into Asset
Expressions by the conversion rules provided in section 6.2. In the AES users can work with
Asset Expressions that include the instances in the CCMS. The users of the CCMS work
with Asset instances according to the schema that was developed in the last iteration of the
UCSCP. For tighter integration of AES and CCMS the introduction of the AES as a module
of the CCMS is an options (see section 2.1.4 on modules). However, the exposure of the full
AES functionality would require significant additions to the module interface.

The combination of AES and CCMS shown in figure 7.14 can be used to several effects:

1. To run the UCSCP. In this case, it is used in phases I and IV of the UCSCP. At the
beginning of the process, Asset instances can be imported into the AES to serve as a basis
for personal modifications. At the end of the process, Asset Expressions are converted
into Asset instances and used to populate the new system.

2. Individual extensions. Users can employ an AES that is connected to a CCMS to extend
instances existing in the CCMS on an individual basis. Assets in the CCMS are shared
among a group of users, each of whom have their own AES for extensions. This use case
also appears in CCMSs in a very similar form: By means of instance personalization,
users in the CCMS are able to modify Asset instances. However, those modifications
are not as flexible as in the AES as they need to adhere to an—albeit personalizable—
schema. If an AES is employed for personal extensions to Assets, the UCSCP can be



136 CHAPTER 7: PRAGMATICS

used to create a schema matching these extensions. This schema is personal to the user
and allows for CCM-style schema personalization (see chapter 2.1.4).

3. System evolution. This scenario assumes most users work in the CCMS, either with a
stable schema or with the personalization means available there. Some users work in the
AES to explore new descriptions possibilities there to find ways to more adequately cap-
ture the application domain. Once significant progress has been made in the descriptions
in the AES, the UCSCP is run. It results in a new schema for the CCMS that accounts
for the new description structures developed in the AES. The enhanced instances from
the AES might also be carried over to the CCMS.

7.2.4 Quality of the Created Schema

Fully automatic assessment of conceptual schemata is a difficult task in general. Several ap-
proaches to fully quantifiable metrics have been proposed [AS83], the drawbacks of which
were discussed above. Frameworks to determine conceptual schema quality (see [Moo05] for
a survey) also employ non-quantifiable criteria. Such a framework can use a quality measure
composed of three dimensions [CACW02]: Specification, usage, and implementation. These
dimensions are illustrated in figure 7.15. The conceptual schema created from Asset Expres-
sions by the process presented above can be evaluated according to these dimensions. To this
end, each dimension is broken down into several criteria [CACW02]:

1. Specification: Specification is concerned with how well the domain requirements can be
understood from the conceptual schema. It is broken down into four criteria:

• Legibility : The legibility of a schema is determined by its clarity and its minimality.
Clarity is purely aesthetic as it is based on the graphical representation of the
schema. Any layout algorithm used to create a presentation of the generated schema
is likely to achieve results inferior to manual layouting. Minimality measures the
redundancy of the schema. If the Asset Expressions used consistent naming, the
generated schema contains little or no redundancy. However, if naming is diverse,
the UCSCP will not collapse structurally similar classes automatically. User input
is then necessary in phase III to reduce redundancy.

• Expressiveness: The expressiveness of a schema can be broken down into concept and
schema expressiveness. The former measures how well the concepts in the schema
can be used to describe the real world. This measure is directly dependent on the
quality of the Asset Expressions which were used to create the schema. If these ex-
pressions provided the necessary information on the domain, the conceptual schema
is able to model this information. Schema expressiveness considers the schema as a
whole. Generally speaking, a schema with more concepts can be more expressive,
for example by providing refined sub-concepts where a simple schema might only
use a single concept. The automatically constructed schema has an inheritance hi-
erarchy that fully reflects the diversity of the underlying Asset Expressions. The
expressiveness is therefore high.

• Simplicity : A proposed measure [GJP00, CACW02] is the relative number of re-
lationships (including inheritance) over the number of classes. This is highly de-
pendent on the actual schema and therefore in general not measurable a-priori.
However, the sample expressions that are used to generate the schema, are likely
to contain some structural noise—in the sense that similar expressions are modeled
slightly differently—which can lead to a high number of subclasses that differ lit-
tle from their parent. When computing the inheritance hierarchy, the Inheritance
Orphan (page 131) is designed to deal with cases of structural noise.



7.2 TYPE INFERENCE FOR INTENSIONAL TYPES 137

Figure 7.15: Dimensions of conceptual schema quality [CACW02].

• Correctness: Correctness refers to syntactic (correct specification of classes) or se-
mantic properties (use of classes according to definition). The former is the case
as classes are created automatically. Structurally coinciding classes with different
meaning can lead to semantic incorrectness of the automatically generated schema,
figure 7.12 gives an example. Such errors need to be corrected by user intervention.

2. Usage: The usage dimension includes the schema’s coverage of relevant features of the
application domain and the overall understandability of the schema by human readers.
The quality of the conceptual schema can be assessed according to how well it matches
the user’s idea of the application domain. Two criteria are used for this:

• Completeness: A schema that represents all relevant aspects of the application do-
main is said to be complete. It is assumed here that those aspects have been modeled
in Asset Expressions by the domain expert. Therefore the schema is complete with
respect to the specifications of the user. If the Asset Expressions created by the
user to describe the domain have modeling deficiencies—e.g., omit certain aspects
or describe them too weakly—which will cause the respective parts of the schema
to exhibit the same weakness. Completeness is therefore highly dependent on the
quality of the sample expressions.

• Understandability : The ease with which the user can interpret the schema is of
great importance to its validation. The choice of meaningful names for classes and
attributes plays a crucial role in this. On the one hand, attribute names in the
generated schema are carried over from the Asset Expressions in which the name
was chosen by the user. It can therefore be assumed to be reasonable meaningful to
the user. Class names on the other hand are invented by the system, if possible based
on the names of a suitable semantic type. If no such semantic type can be found,
a generic name is used. The choice of class names can thus be rather meaningless,
requiring additional input from the user.

3. Implementation: The effort required for the first implementation of the schema in an
information system and the effort for maintaining this system upon schema changes are
summarized in the implementation dimension:

• Implementability : Refers to the amount of work that is necessary to create an in-
formation system based on this schema. For an Asset schema, this work is done by
the compiler framework, no developer is needed. All additional manual work is not
schema-related, the implementation effort can therefore be considered to be roughly
independent of the schema. Excessive schema sizes—caused by, e.g., a too fine mod-
eling of classes with few differences—will of course lead to much larger generated
systems. However, given common execution times of the compiler framework, any
practical schema is unlikely to cause problems.



138 CHAPTER 7: PRAGMATICS

• Maintainability : Maintainability measures the ease with wich the conceptual schema
can evolve. Schema evolution is an important use case of Conceptual Content Man-
agement Systems which is supported well by compiler framework and system archi-
tecture, see section 2.1.4. Important questions such as model cohesion and coexis-
tance [CACW02] are addressed by the Conceptual Content Management approach.

Schema generation creates a schema that is of high quality with respect to its coverage of
the application domain as described by the user. Further advantages are the automatic pro-
vision of schema integrety and syntactic correctness. Problems arise in areas where creativity
is necessary: the choice of appropriate base expressions or the naming of classes. These must
therefore be left to the user. Due to the use of CCM’s system generation approach, imple-
mentation complexity does not burden the user. Larger schemata with richer models can thus
easily be tolerated.



Chapter 8

Application Example

This chapter evaluates the Asset Expression approach in the context of an application project.
Many of the insights into entity descriptions were derived from this project. The application
project described in this chapter was carried out in parallel to the development of Asset Ex-
pressions. Therefore, important concepts of Asset Expressions appeared in the project. Below
it will be shown how some of the deficiencies of the developed information system that was
created in the project can be remedied by use of Asset Expressions.

Because of the chronology of events that the project was not carried out with Asset Ex-
pressions in place beforehand. This chapter therefore demonstrates how the domain is fully
modeled with Asset Expressions and how this affects the produced information system.

In the early phases of the project the only concepts from Asset Expressions that were al-
ready present were content components and their connection to description attributes. Among
the project members there was a demand for what was called “free-form” descriptions of enti-
ties. However, it was quickly acknowledged by all participants that completely free-form entity
descriptions were unlikely to yield satisfactory results in a collaborative project. Instead it was
decided to go ahead with what was available at the time: structured descriptions as a basis for
a Conceptual Content Management System (section 2.1.4). In fear of demanding unapplicable
information on entities, no mandatory attributes were introduced, only a few received “recom-
mended” status. A prototype that connects content components with conceptual attributes
was also built [Uri05]. The prototype works on Asset instances and relates attributes to parts
of the content of the instance. It can handle images and plain text content. To implement the
connection of attributes and content components, the prototype uses an explicit meta-model
for content components as described in section 6.2.2.

A central part of the project is its classification taxonomy. For practical purposes this
taxonomy also contains instances of some of the concepts it provides. The semantic types
presented in this chapter are concepts from this taxonomy. They were obtained by removing
all instances from the taxonomy and introducing a few additional types to better structure the
existing types.

8.1 The Application Domain

The name of the project is “Geschichte der Kunstgeschichte im Nationalsozialismus”, which
translates to “history of art history during the national socialism” and is abbreviated GKNS.
It is a collaboration of the art history institutes of the universities of Berlin (HU), Bonn,
Hamburg, and Munich as well as the Software Systems Institute at the Technical University of
Hamburg-Harburg. For more information on this collaboration and on the project itself please
refer to its homepage1 and the web interface of the Conceptual Content Management System,

1http://www.welib.de/gkns

139



140 CHAPTER 8: APPLICATION EXAMPLE

which can be found online2. The system is generated from a conceptual schema, which can be
obtained from Asset Expressions by means of the UCSCP.

The project collects large amounts of documents dealing with art history in Germany in
a timeframe between 1930 to 1950. The aim of the project is to provide an integrated set
of resources to enable future research by art historians on the topic. This set is difficult to
obtain by traditional means—i.e., research in archives—because the documents are scattered
over many archives across Europe. To facilitate the coherent interpretation of these documents,
the project’s aim is to collect documents electronically and to provide research facilities on this
collection. Therefore, documents need to not only be scanned but also described conceptually.

Future research based on the collected documents calls for the digital representations to
be as objective as possible such that research is not biased later. Measures that encourage
objectivity as well as collaboration between users are discussed in section 8.4.

While the entities of central importance are the documents themselves, adjacent entities
such as persons, institutions, and geographic locations are also included in the application
domain. The purpose of the expressions modeling these entities is mainly to interconnect
documents and not to provide a complete model of the respective entity.

8.2 Asset Expressions for Domain Entities

The expressions representing documents have the richest model in the GKNS domain. Fig-
ure 8.1 shows an example of such a document. Two components that are described via ab-
stractions are the persons occurring in the document. As done on the left-hand side of the
figure, the applied expressions can model the persons to the extent necessary in the context of
the document. The other two explanations deal with date and place of the document. In the
case of figure 8.1 it might be expected that a human with some knowledge in the application
domain would know where the city of Hamburg is, making its explicit mention superfluous. It
is, however, difficult to draw a precise line between those geographic locations for which this
is true and those for which it is not. It is therefore reasonable to always make the geographic
location explicit regardless of its popularity. Figure 8.1 does not reference other expressions
to illustrate how a rich network of contents can be used to create semantic neighbourhoods
between related contents.

Figure 8.2(b) shows an expression which describes a document by mostly using already
defined expressions. One of the predefined expressions is shown in figure 8.2(a). Besides
referencing expressions directly, users also have the option to create a new, richer description
of the entity which better suits the context of the explanation. Suppose that in the example of
figure 8.2(b) the expression describing the art history institute (KHIBonnorig) could be more
helpful to the explanation if it also included the employees:

KHIBonn2 := (λmitarbeiter: WissenschaftlichesPersonal*.KHIBonnorig)
{AnnaWarburg, AlfredStange}

If this description is used in explanations in place of the original one, viewers benefit from
the added information but can also still connect the overall expression to the original model for
the institute. To retrieve all documents which use the institute in an explanation, one might
for example pose the following query:

/*[//application/operand//*=KHIBonnorig]

Expression references can be expanded by a presentation system (chapter 5) into large
networks such as the expression in figure 8.1. Modeling each entity in its own expression instead
of putting everything into one large network has the advantages of making entity boundaries

2http://www.welib.de/gknsapp/showlogin.do



8.3 SEMANTIC TYPES 141

Figure 8.1: Venia Legeni for Ludwig Heydenreich. Semantic types for plain contents are
omitted.

explicit, providing hints for the simplification and enrichment of expressions (by collapsion
of applied expressions and references to other expressions in explanations), and reducing the
cognitive load on users familiar with the application domain (by not requiring them to re-detect
large patterns of recurring expressions).

8.3 Semantic Types

The hierarchy of semantic types was defined in a joint effort in the GKNS project. While some
additions were necessary during the course of the project, there were no personal variants of
types for particular users. The hierarchy is a combination of types from several domains, some
of which are specific to the project (institutions, roles, etc.) while others are not (e.g., time
and topology). Figure 8.3 shows an overview of all domains but omits many types, only listing
some examples from each domain.

Jointly developing the semantic types is important to involve users who are not at ease with
hierarchical relationships. This problem is not special to the GKNS project and has also been
observed by others [GW02]. Potential misuses of the sub-type relationship weaken its “is-a”
semantic by including all sorts of relationships between semantic types—such as “related-to”
or “part-of”—where an “is-a” relation is required by the substitutability of Asset Expressions.
Involving modeling experts is a common remedy to this issue [GW02], the experiences in the



142 CHAPTER 8: APPLICATION EXAMPLE

(a)

(b)

Figure 8.2: Definitions of recurring entities are used to describe documents. Semantic types
for plain content are omitted.



8.4 COLLABORATIVE CREATION OF EXPRESSIONS 143

Figure 8.3: Summary of semantic types from GKNS. The top-most semantic type Any is
located near the center of the figure.

GKNS project suggest that some additional training for domain experts can be sufficient if a
very structured style of discussion is adopted.

8.4 Collaborative Creation of Expressions

A central aspect of the GKNS project is collaboration. The Asset Expressions modeling
archived documents therefore had to be constructed with special emphasis on interoperability
between users. To this end four means are necessary:

1. Agreed semantic types as introduced in the previous section.

2. A rather high number of traits to deal with recurring needs with respect to the structure
of descriptions.

3. Editorial guidelines which detail many aspects of expression creation such as when to use
which trait or semantic type, as well as how to deal with uncertain or unknown data.

4. Common descriptions for secondary entities. These entities are modeled because they
are related to the documents of interest. Examples include persons who might occur as
sender of letters as well as authors of documents or institutions in similar positions.

Below some of the traits for the GKNS domain are shown. While the semantic types
stem from different domains, their namespaces are omitted for brevity as the type names are
unique across domains. A brief break-down of the domains was discussed in the previous
section. The semantic type prescribed by the traits is usually Any. The traits are constructed
to reflect different kinds of documents which occur in the archives. The semantic types of
particular expressions however, are determined by the contents of the respective documents. A



144 CHAPTER 8: APPLICATION EXAMPLE

lax prescription of semantics types in the traits therefore ensures the applicability of the traits
in as many scenarios as possible.

Traits are organized in a hierarchy for two purposes. The first is to factor out similarities
between traits to keep the definitions more concise. The second is to guide users in choosing
a trait by navigating the hierarchy top-down until they arrive at the most specific trait which
meets their requirements.

trait GKNSDokument refines EmptyTrait of Any with λdatum: Zeitpunkt.λstandort: Signatur

This trait captures common abstractions of archival documents. Any document described
in the GKNS project needs to supply this information in order to be usable by allowing its
basic placement in time and the discovery of the original from the archive by means of the
archive signature.

In a project which deals with the history of a scientific discipline, publications are of great
importance. A small hierarchy of traits for all publications captures this, in particular to
suggest some details of expressions modeling scientific publications.

trait Veroeffentlichung refines GKNSDokument of Any with λautor: Rolle.λjahr: Zeitpunkt.
λverlag: Verlag

trait Habilitationsschrift refines WissenschaftlicheVeroeffentlichung of Dokument with λautor:
Rolle.λtitel: String.λdatum: Zeitpunkt.λgutachter: Professer.λgutachten: Gutachten

trait Dissertation refines Veroeffentlichung of Dokument with λtitel: String.λdatum: Zeitpunkt.
λgutachter: Professer.λgutachten: Gutachten

There are also semantic types for different kinds of documents which should not be confused
with traits giving structure to the descriptions for these documents. In the last trait definition
Dissertation the semantic type is Dokument which is unrelated to the trait GKNSDokument.

Dissertation and habilitation are also provided with traits as they are important steps in
academic careers which allow interesting connections of their authors to other persons in the
field. Other types of publications (e.g., journal articles, books, etc.) can of course also be richly
modeled (e.g., with the journal they appeared in) but this is of less interest here as the GKNS
project does not aim to build a publication database of the time.

As a reflection of processes, institutions or personal lifes, factual documents play an impor-
tant role in a project which strives to enable research in a domain by providing an objective
archival basis. Factual documents come in a large variety, making it helpful to acknowledge
the most interesting ones with traits:

trait Sachdokument refines GKNSDokument of Any with λverfasser: Rolle.λbetroffener: Rolle

trait Antrag refines Sachdokument of Any with λsteller: Rolle.λadressat: Institution

trait Ausweis refines Sachdokument of Any with λhalter: PrivateRolle

trait PersonenFoto refines Sachdokument of Any with λfotograf: Rolle.λabgebildet: Rolle

trait Lebenslauf refines Sachdokument of Any with λperson: Rolle

trait Publikationsliste refines Sachdokument of Dokument with λautor: Rolle.λeintraege: Any*

Providing a minimal set of abstraction is of particular importance for correspondence doc-
uments such as letters. These documents make some sense on their own but their full influence
can only be assessed in the context of the whole chain of correspondence. The necessary
information is required by the abstractions in the following trait:



8.5 CONCEPTUAL SCHEMA AND INFORMATION SYSTEM 145

Figure 8.4: Screenshot of the GKNS user interface. This user interface is also provided by
the prototypes during the schema construction process and allows users to directly assess the
implications of changes.

trait Korrespondenz refines GKNSDokument of Any with λabsender: Rolle.λempfaenger:
Rolle.λabsendendeInstitution: Institution.λempfangendeInstitution: Institution

The majority of documents in the project can be described by expressions based on this
trait. Additional traits include expert opinions (Gutachten), lecture notes (Mitschrift), and
laws (GesetzErlassBestimmung). These are not as common as correspondences.

trait Gutachten refines GKNSDokument of Any with λautor: BeruflicheRolle.λbegutachtet:
Any

trait Mitschrift refines GKNSDokument of Any with λautor: Rolle.λthema: Veranstaltung

trait GesetzErlassBestimmung refines GKNSDokument of Any with λerlasser: Institution.
λunterzeichner: Rolle*.λveroeffentlichungsdatum: Zeitpunkt.λwirksamkeit: Zeitpunkt

The traits provide a minimal description framework for most expressions that are based on
documents.

8.5 Conceptual Schema and Information System

In the steps described in the previous sections, great emphasis was put on collaborative features.
This has the effect that expressions which describe similar entities share a common kernel of
explanations (due to the trait employed to create them) and are typed from a common system



146 CHAPTER 8: APPLICATION EXAMPLE

Figure 8.5: Screenshot of the data entry tool from the GKNS project. The photograph in the
newspaper article on the right contains two content components.

of semantic types. These two features of course greatly facilitate the creation of a conceptual
schema with the schema creation process from section 7.2. It is acknowledged that some work
for the creation of the schema has already been done by creating the traits. However, the need
for collaboration rarely comes as a suprise and a minimal joint effort of modeling and domain
experts to create the traits can reasonably be assumed at the beginning of the project.

A conceptual schema for the GKNS domain can be created semi-automatically from Asset
Expressions such as the examples shown earlier in this chapter. The classes in this schema
are from three groups. The first group are those classes describing archived documents. This
group is richly modeled as various details are of interest in the application domain. The second
group are classes which—while specific to the application domain—are not of interest by them-
selves but are mainly used to describe documents. Examples from this group are several types
of persons as well as different institutions which produce or are subject of documents. The
semantic types of these expressions are rather diverse (figure 8.3 shows parts of the hierarchies
for Rolle and Institution). The third group are classes that are not specific to the application.
They provide information on time and locations. It makes sense to import this third group
from existing schemata to allow for some interoperability with other systems by this mini-
mal common model. There are a several proposals which deal with time [PSZ99, HP06] and
geography [PSZ99, OGC04].

Compromises between the richness and the complexity of the conceptual schema need to
be made, especially in the first group. The classes in the second group tend very much towards
simplicity as their instances serve as connections between documents. Elaborate models of
persons or institutions are not of interest in the project. In fact, the manually developed
schema of the GKNS project took an extremely simplistic approach to the second group:
persons and institutions are only modeled by their name. They were even introduced into the
classifier taxonomy to create a user experience very similar to a previous system.

A system configuration was set up to generate a CCMS from the created conceptual model.
This is clearly a task for a systems expert and beyond the scope of the domain expert. Figure 8.4
shows the web-based user interface of this system. The document displayed is the one modeled
as an Asset Expression in figure 8.2(b). The setup of the GKNS system is shown in figure 8.6,



8.6 EVALUATION 147

Figure 8.6: The architecture of the GKNS system. Several of the modules are in fact macros
of module patterns, omitting several mediation modules.

some additional information on the system can be found in [BSHS06]. Figure 8.5 shows the
offline data-entry tool for the project. The system provides the functionality expected from
a modern distributed information system. It includes a data entry tool with ansynchronous
replication to the central system, a staged editorial process for quality assurance, as well as
user management and access control. Not visible in the figure are non-functional features such
as efficient search over very large datasets.

Prototypical systems created as feedback to the user during the schema construction process
(see section 7.2.2) also have the interface of the full system and show the same data, as the latter
comes from the Asset Expressions. Compared to the module configuration of the productive
system shown in figure 8.6, the prototype setup is much simpler with only two modules. This
makes is feasible to create several different prototypes successively as both system generation
and startup time are suitably short.

8.6 Evaluation

As illustrated above, Asset Expressions can be used to model the application domain, with the
greatest benefit if the description of entities can be based on a medial representation. Networks
of expressions put different entities—each is represented by medial content—in visual proximity,
allowing users to quickly grasp their dependencies with minimal navigation through expressions
(compare figure 8.1). Such networks are therefore valuable to the domain expert as well as
the casual user. To reach larger audiences of casual users it is however necessary to reduce



148 CHAPTER 8: APPLICATION EXAMPLE

entrance barriers as far as possible. This can be achieved by providing a user interface of a
familiar kind, today mostly web-based interfaces.

Issues encountered in applying the Asset Expression approach to the GKNS project are
mostly standard ones. Properly setting up the system of semantic types is a non-trivial task
which cannot be carried out successfully by any domain expert alone in a project the size of
GKNS. On the positive side, the type system does not require frequent changes. In fact, when
changes occur, they need to be made after a concensus has been reached in the whole group to
avoid fragmentation. Use of a type hierarchy with “is-a” relationships can take domain experts
some time to become aquainted with. The lack of structural consequences of semantic types
on the typed expression certainly facilitates this understanding.

In the creation of the semantic types, problems occurred which can be observed in similar
projects regardless of modeling paradigm. One is the proper modeling and use of persons in
roles, another the description of topological locations which change over time (e.g., countries,
cities belonging to countries, etc.). The issue of roles can be addressed in Asset Expressions by
introducing different semantic types for each role that is of interest in the application domain
(see figure 8.3 for the GKNS approach to this). The same physical person can then be modeled
in different roles by creating several role expression in which (a) the same content is typed
with the respective semantic types, and (b) the explanations on the expression reflect the
aspects about the person specific to this role. The expressions are then used in the appropriate
places—which, e.g., require the person in a personal or professional setting in the case of GKNS.
Through the identical content the role expressions are connected, creating a multi-factet model
of the person that can be interesting on its own.

Topological issues in GKNS were manifold due to the the time the project is concerned
with: Countries changed shape or name, they came into being or vanished; accordingly cities
changed names as well and moved from one country to another. The adopted solution to this
diversity problem was to model each country independently of its extent—the project’s interest
in countries is mainly political not geographical—with different expressions for new countries
in a political sense, while cities are modeled as one continous expression, possible providing
different names. In combination this means that cities must not be connected to a country
in general as this connection would need to change over time, therefore the model of cities
is not time dependent. Such connections can, however, be made on the basis of individual
expressions, for example by creating a richer model of a city before using it in explanations
(analogously to the modeling of the institute in section 8.2).

Depending on the background and size of the user community, the freedom of modeling with
Asset Expressions can be very beneficial or can cause some problems of coordination. When
creating expressions, AESs offer help to users in a variety of forms (traits, components, visual
notation) but enforce only few restrictions on the user. This allows users to choose the model
most appropriate to their needs. However, if users collaborate to create a set of expressions
that coherently models an application domain, they need to use means outside the system to
ensure coherence. It was found in the GKNS project that the domain experts were very much
at ease with ensuring coherence by social means (e.g., editorial processes and guidelines). In
fact, most restrictions imposed by the structured information system were fiercely debated, as
it was felt that they were inappropriate to some of the entities.



Chapter 9

Summary and Discussion

This chapter summarizes the contributions of this thesis. It then relates the presented approach
to other ideas in the same or overlapping fields and finally presents possible directions of future
research on the topics.

9.1 Contributions

Marshall McLuhan has coined the phrase of “media [as] the extensions of man” [McL94]. A
medium in the sense of McLuhan is a means that augments a human capability. Humans can
speak to others face-to-face in a conversation for example. Telephones augment this ability
by allowing the conversation to take place over long distances. Recording technologies make
similar achievements for displacements in time. Asset Expressions are a form of recording.
Their purpose is to enable humans to communicate the meaning of medial content. They
do so by combining medial content into larger networks of explanations. To provide and
handle such explanations this thesis presents three contributions: (1) languages for defining
and working with Asset Expressions, (2) systems supporting the lifecycle of Asset Expressions,
and (3) pragmatics showing how Asset Expressions can be created efficiently and how further
conclusions can be drawn from them.

Asset Expressions are a modeling paradigm for entities of the real world. The key notion
of these models is the combination of medial representation of the entity with a conceptual
explanation, which again uses content. This meets the requirements of Ernst Cassirer (see sec-
tion 1.1) who stated that a concept cannot exist without extensional backing just as the entity
providing this extensional backing cannot be recognized without the corresponding concept.

Three design principles have great influence on the Asset Expression approach: “Ease of
use”, “formality to help”, and “codifyable understanding” (figure 9.1). The first refers to a
domain expert’s use of the approach to create descriptions of entities. This can be done with
relative ease due to a simple formalism. The second is formality to help the user to create
expressions. It comes in the form of semantic types and traits. The goal is to maximize the
profit for the user in the trade-off between formality and ease-of-use. The third refers to the
ability of the formalism to accommodate explicit (codified) information about the application
domain that is of value to a machine. Examples of codified information are semantic types and
the schema creation process.

Chapters 3 and 4 explain the Asset Expression language. It can be used to describe entities
by providing descriptions of a medial representation of these entities. In their simplest form,
Asset Expressions allow users to create any model without regard to its semantics. Users
are free to, e.g., create non-sensical models, which have no correspondent in the application
domain because they relate medial representations of entities which are—per the semantics of
the application domain—unrelated. Asset Expressions do not assume the a priori presence of an

149



150 CHAPTER 9: SUMMARY AND DISCUSSION

Figure 9.1: Design principles of the Asset Expression approach

intensional conceptualization of the application domain. As this model does not exist a priori,
it cannot be used to enforce the semantics of the application domain in created expressions.
In fact, such a model of the application domain can be created a posteriori in the form of a
conceptual schema based on the expressions describing the domain. To inject some knowledge
of the application domain into expressions, Asset Expressions are equipped with a type system
(section 3.3).

Asset Expressions create a co-occurrance of explained and explaining content that is easily
visualized. By means of the visual representation of expressions, this is a major enabler for
domain experts who can quickly grasp the model of the application domain. Working with Asset
Expressions therefore requires the direct incorporation of content representations in expression
presentation. Given that the content is multimedial, this can be achieved best in dedicated,
computerized systems. Such an Asset Expression System is presented in chapter 5. It allows
the direct creation and manipulation of Asset Expressions as well as browsing through existing
expressions. The system is also designed to let users collaborate by inspecting and referencing
each other’s expressions. By these means, joint models of an application domain can be built or
existing domains can be combined. This is achieved by collecting strongly related expressions
in a common workspace but making the borders of this workspace penetrable to allow the
relation with expressions from different workspaces. Furthermore, the system serves as a basis
for higher level services on Asset Expressions that can, e.g., make the creation of expressions
more efficient or even provide migration paths to schema-based information systems.

The creation of Asset Expression networks is discussed in section 4.6. Collaboration of users
benefits greatly from the possibility to successively create descriptions that become richer with
every step. As there are no structural constraints which limit the reuse of such augmented
expressions, the richer model can be used in places where the weaker model was expected.
Users are therefore able to create the most appropriate explanation on a per-instance basis
without hurting reuse or fragmenting the application domain by populating it with redundant
expressions. Section 8.4 provides an example of this.

An important step in the creation of an Asset Expression is the choice of a semantic type
for the described content. Generally speaking, the creator of the expression is free to choose
any type, but might struggle to find an appropriate one in the hierarchy of semantic types
for the application domain. To facilitate this, section 7.1 presents a means to discover other
expressions with similar explanations. These similar expressions can provide creators of new
expressions with hints on appropriate semantic types. Similar expressions are discovered by
comparing the sets of types of their abstractions. This can not only be used to suggest semantic
types for expressions, but also as a query facility to discover expressions that use explanations
the user is interested in.

Flexible expression mechanisms allow domain experts to describe and understand the ap-



9.2 COMPARISON WITH RELATED APPROACHES 151

plication domain. Asset Expression Systems (AESs) support this work based on individual
expressions, which can be organized, queried, or otherwise lifecycle-managed in the system.
Contrary to AESs, most software systems provide their functionality not on a per-instance
basis but exploit structural similarities of their data to form higher levels of abstraction and
define services on these. A common example of such an abstraction are classes. The unifor-
mity of their instances can be exploited in nearly all parts of the software system, e.g., in user
interfaces, distribution, or access control. If the system is used to manage large amounts of
data, such uniformity becomes a necessity, as it is otherwise impossible to efficiently perform
services to the user.

In general, uniformity is not found among the expressions in an AES. However, once the ap-
plication domain has been extensively modeled and is well understood, it makes sense to realize
the benefits available to class-based software systems for the data in the AES. At this state of
development of the domain users are likely to have understood the central structural aspects
of it. These structural aspects can be captured in a conceptual schema by the schema creation
process presented in section 7.2. The goal of this process is the discovery and exploitation of
common structures that emerge from Asset Expressions. In traditional software development
their discovery is the task of a modeling expert who closely works with a domain expert to
develop these structures. In the UCSCP the AES largely takes the role of the modeling expert.

Using the presented schema construction process, the domain expert is enabled to create
a conceptual schema for the application domain based on the provided Asset Expressions.
Familiarity with the conceptual modeling paradigm is not assumed as the domain expert can
receive feedback in the form of prototype systems. The process creates intermediate conceptual
schemata, which are used to generatively provide prototype systems—most importantly the
user interfaces of these systems. If the user is unsatisfied with the prototype, the schema—and
through it the prototype—can be affected by either modifying the underlying Asset Expressions
or taking direct action on the schema, given the user is at ease with the latter.

9.2 Comparison with Related Approaches

Approaches related to the presented work can be divided into two areas: (medial) descriptions
of entities and processes to obtain conceptual schemata and the associated information systems.
The former will be discussed in section 9.2.1, the latter in section 9.2.2.

9.2.1 Descriptions of Medial Content

Asset Expressions provide structured descriptions over medial content. There are several other
approaches which overlap with Asset Expressions, seven of which are discussed here:

1. MPEG-7 is largely concerned with substructuring of medial content, but it also provides
narrative worlds for conceptual descriptions.

2. MPEG-7 and ontologies can be combined to give the narrative worlds a sound conceptual
basis.

3. Annotations attach additional information to medial content.

4. Markup embeds structural information into content.

5. Hypermedia deals with content that can be interconnected on its own.

6. The Semantic web provides semantic descriptions of online resources.

7. Structured schemata usually do not consider medial content explicitly but provide strong
conceptual descriptions.



152 CHAPTER 9: SUMMARY AND DISCUSSION

target
audience

sematics in
same
paradigm

formalisms for
integration

addressed media

Asset
Expressions

humans
(domain
experts)

yes yes (typing,
components)

variety of multimedial
content, extensible

MPEG-7 computers no (but in
same
standard)

yes (narrative
worlds)

audio and video,
extensible

MPEG-7
with
ontologies

computers no yes (narrative
worlds and
ontological
means)

audio and video,
extensible

Annotations humans usually not no wide variety, limited
in particular
implementations

Markup humans/
computers

no dependent on
implementation

several, but only
specialized formats

Hypermedia humans yes no (some
extensions
available)

hypermedia
documents encompass
different types of
content

Semantic
web

computers no yes (limited) many

Structured
schemata

computers n/a no no explicit handling of
content

Table 9.1: Comparison of approaches to interrelate content and/or capture its semantics

These approaches will be compared to Asset Expressions, most have been described indi-
vidually in chapter 2. Table 9.1 provides an overview. The comparison will be based on four
criteria, which expose differences and similarities of the approaches:

1. Target audience: The actors who typically consume the instances or documents in the
approach. Generally, these can be computers or humans, requiring means (syntax, editing
facilities etc.) which are very different in nature.

2. Modeling paradigm of semantic descriptions: All approaches provide means to describe
the modeled entity, but the paradigms used to do so are vastly different. An interesting
point is whether the semantics must be described by specialized means or whether the
means used to provide the content instances suffice.

3. Formalisms for integration: Semantic descriptions need to be related to the content
representation they describe. This integration differs in the degrees of formality and
standardization, for some approaches it is implementation dependent.

4. Addressed media: The types of medial content which are addressed by the approach.
Some provide a fixed set, others are extensible, yet others can be applied to many, but
concrete incarnations are limited.

The target audience of Asset Expressions are human users, more specifically domain ex-
perts. A medial representation of the described entity is explained by other instances of medial



9.2 COMPARISON WITH RELATED APPROACHES 153

content. This pattern is applied recursively, leading to integrated semantic descriptions. Expla-
nations can either be over the whole of the content or over one of its components. In both cases
the explaining expression is tightly integrated with the explained expression. Asset Expressions
can incorporate a variety of medial contents (compare, e.g., the selectors in section 3.7) and
are designed to be extensible should the need arise to explain previously unhandled kinds.

At first glance, MPEG-7 seems to be very close to Asset Expressions. It provides content
components (called segments) and allows the description of individual components or the con-
tent as a whole. While it is mainly aimed at audio or video content, the standard provides
extension points, which can be used to incorporate any kind of medial content. Content com-
ponents in MPEG-7 are described in narrative worlds. These descriptions cannot use medial
content but are confined to instances of concepts defined for the narrative world and relations
between these instances, see figure 2.14 on page 37. This is an important difference between
Asset Expressions and MPEG-7 descriptions of medial content. When considering the target
audience, it becomes clear why MPEG-7 does not use medial content for the description of
narrative worlds: The descriptions would not be understandable for a machine, which lacks the
cognitive means to interpret a medial description. Therefore MPEG-7 builds a fully structured
model in the narrative worlds using only defined concepts—some are provided in the standard,
but the set is extensible—and machine understandable primitive literals.

The descriptions in the narrative worlds re-tell the story of the medial content, such that
the machine—which in general cannot draw conclusions that seem trivial to humans from the
medial content alone—can understand it to the degree necessary for the application at hand.
From a human point of view, most of the given information is redundant as it can be obtained
directly from the content at a glance.

Asset Expressions and MPEG-7 descriptions thus solve a similar problem: providing ad-
ditional context information that enables the target audience to understand a piece of medial
content to some degree. However, the means to provide this context information and the level
of detail of the information are very different due to the target audience.

The narrative worlds of MPEG-7 suffer from the lack of semantic definitions of the employed
concepts [HBHV04, Tro03]. This presents a problem to machine interpretation. Combining
ontologies with MPEG-7 can remedy this situation as described in section 2.14. Such a com-
bination does, however, not make the description more useful to humans. One might argue
that, quite the contrary, narrative worlds become even more difficult to understand due to the
combination of two paradigms.

Document annotation approaches provide additional information on parts of documents. In
this basic notion they are similar to Asset Expressions. The target audiences are also similar:
human users who work with the document, i.e., commonly domain experts. Annotations were
discussed in some detail in section 2.3.1. They differ from Asset Expressions in the form in
which the annotated information is provided, as annotation approaches usually use a different
paradigm to provide the annotated information, e.g., [DM99, GS01, MYR03]. Specifically, this
separation of the description paradigms for documents and annotations prohibits the recursive
application of the annotation mechanism: Annotated information can in general not be anno-
tated again. In this respect annotations are similar to the narrative worlds of MPEG-7 which
exhibit the same property. Just like content in Asset Expressions, the format of the annotated
documents can neither be assumed to include means to specify the base of an annotation nor
can it be augmented with these means. In annotations this has the effect of a rather loose
coupling between annotated document and annotation. Any annotation can be attached to
any annotation base. Extensions, such as conceptual annotations [GS02], also carry out the
creation of base and annotation in a single step, thus avoiding the question of correspondence
of base and annotation by assuming that the author of the annotation has annotated correctly.
Annotations are applicable to a wide variety of content kinds.

Central to the idea of markup is the embedding of information into the base document.
This means that the document format must be prepared to accomodate the markup. The



154 CHAPTER 9: SUMMARY AND DISCUSSION

information provided in the markup therefore is closely related to the document. In many cases
the markup provides structural information on the document that facilitates the interpretation
of the document. Some forms of markup are directed towards human users, others towards
computers (see section 2.3.1 for examples). Markup for computers is often found in processing
instructions, e.g., to specify how a document should appear in print or on screen. As the
markup is embedded into the document, this integration is usually fully specified, for example
in a grammar. This grammar also fixes the available markup means, thereby limiting its
expressiveness. Markup can only be applied to a limited set of content formats. These formats
need to provide means to markup the content. Thus markup can generally not be applied in
retrospect to any content.

Hypermedia systems aim to interrelate a large body of content instances—called documents—
by providing links between them. These links are usually not based on a whole source document
but some part of it. In a special kind of hypermedia system—hypertext systems—this is es-
pecially prominent as the base of the link usually consists of only a few words from a large
document. Hypermedia systems often store documents and links in an integrated format, sim-
ilar to the embedding of markup in documents. However, there are exceptions to this rule in
which links are first class citizens and are stored separately from the document they connect.
An example of this are Open Hypermedia Systems [ØW96]. Other approaches add link types to
differentiate between kinds of links [HYG99] or node types [BVA+97] to assign to documents.
If the node types are enforced on the target documents of links, they are comparable to the
semantic typing of abstraction variables in Asset Expressions.

Hypermedia systems are made for human users to improve the accessibility of documents by
associative thought structures—an idea first put forward in 1945 [Bus45]—as compared to other
means commonly available in information systems. If a link in a hypermedia system is used to
explain the semantics of a portion of the base document, all the means are available to create
the explaining document that could be used for the base document. However, the integration
of the two documents is rather loose in most hypermedia systems. All the information that is
available is that there exists a link. Systems thus have no means to detect and prevent senseless
links between documents. Conceptual hypermedia systems attempt to remedy this situation
by making both links and documents instances of a conceptual schema [NN91]. Links are then
superimposed onto documents and the address of their base is stored explicitly, similarly to
selectors in Asset Expressions. In principle, the hypermedia approach is sufficiently general to
be applicable to any kind of media. In practice, particular implementations limit the available
content kinds. Reasons can be specific needs of application domains, difficulties of embedding
links in content (unless links are first class citizens), or implementation limitations.

The semantic web is an effort to facilitate information exchange by associating each resource
on the world-wide web with a machine-processable semantic description [BLHL01]. Similarly
to the narrative worlds of MPEG-7 this description contains a structured account of the content
of the resource. However, unlike MPEG-7 or Asset Expressions, the resource is only described
as a whole, no content components are available. The target audience are computers, humans
are intended to use the semantic web through secondary interfaces for posing queries, etc.

The semantic web provides specialized means [ROH05, BHH+02] for descriptions. Most
resources on the web, however, are not written in these description languages, resulting in a
division between base resources (e.g., HTML pages or images) and semantic resources describ-
ing these. This redundancy of information is a commonly criticized aspect of the semantic
web [HP02]. In principle, descriptions could be applied again to description documents such
that the semantic resources are also described, but the focus of the semantic web is clearly on
describe ordinary web resources and not on describing itself. Because resources are described
as a whole, any resource that can be identified can also be described regardless of its content
format. Relations between the semantic web and Conceptual Hypermedia Systems have also
been explored [GBC+01].



9.2 COMPARISON WITH RELATED APPROACHES 155

Structured schemata define intensionally how entities can be described. To this end, classes
or similar concepts are used. Individual descriptions are created as instances of these classes
with the specified structure. Schemata are used in many circumstances, conceptual schemata
are of particular interest here. They are mainly intended for use by computers, for example in
the creation of information systems. In most cases there is also an indirect use of the schema
by humans, for example through an information system. However, unlike the other approaches
presented here, conceptual schemata usually do not explicitly deal with medial content. An
exception are Asset-based schemata, which provide a dualistic model of entities with medial
and conceptual descriptions. These schemata and their relationship with Asset Expressions
have been discussed in the previous chapters (specifically 2.1.4, 6, and 7.2). Other schemata
simply treat content as a piece of data with no particular semantics or capabilities. Therefore
they also do not provide formalisms for integration of conceptual and medial data. However,
means to interrelate entity descriptions exist, for example relationships in ER models [Che76].

9.2.2 Schema Creation Processes

Creating a conceptual schema for the application domain is a common task in software en-
gineering. Various approaches to the task exist and are documented in literature. A central
issue in most approaches is the question of how to obtain information about the domain from
a domain expert. Many times, this information will then be codified by a modeling expert,
who collaborates with the domain expert. The degree of involvement and collaboration of both
domain and modeling expert varies, some approaches—such as the schema creation process
UCSCP presented in section 7.2—can be enacted without a modeling expert. This section
relates the UCSCP to processes with similar goals.

Object-oriented analysis is a common approach to software engineering [Som00]. Even
though not all object-oriented modeling approaches contain an explicit conceptual model, some
examples exist [Lar05, Fow04]. A differentiation is usually made between analysis and design
models. The former describes what the system does, the latter describes how this functionality
is achieved. Domain experts are usually involved in building the analysis model, but the
understanding of the modeling expert is of great importance for the model. This is rather
different to the UCSCP, which puts the focus on the domain expert by at least decoupling and
in many cases removing the modeling expert altogether. Object-oriented approaches do not
include particular means of feedback for the domain expert. It is assumed that this feedback
can be communicated sufficiently by the modeling expert, who works with the domain expert
to build the model. However, while some argue that the common representation paradigms for
object-oriented models, such as UML class diagrams [BRJ99], can intuitively be understood
by domain experts, such assumptions can be treacherous and lead to flaws in the model, see
section 7.2.1.

Central issues of conceptual modeling are also found when creating an ontology for an
application domain. Several processes for the development of ontologies have been proposed
in literature [GPFLC04]. Two important problems of ontology engineering also occur in the
conceptual modeling, in particular in the scenario of the UCSCP: The complicated reuse of
existing ontologies and the complexity of modeling languages which can be impedimental to
the involvement of domain experts. In the UCSCP the former problem occurs when the process
starts from an existing model, e.g., during schema evolution. The latter problem is also found
in conceptual modeling in general, as conceptual modeling paradigms are not necessarily more
understandable to domain experts than their counterparts from ontologies.

Interesting for its similarity to UCSCP is the collaborative approach to ontological modeling
of Holsapple and Joshi [HJ02] (abbreviated OMHJ below). It uses the Delphi method [LF75],
which encourages collaborative decision making through a moderator as well as organized feed-
back. The process is divided in four phases: preparation (determining criteria and context of
the ontology), anchoring (building an initial ontology as a starting point of iterative refinement),
iterative improvement (by systematic collection of participants’ opinions), and application (for



156 CHAPTER 9: SUMMARY AND DISCUSSION

example in an information system). The UCSCP also uses iterative refinement of the model
by posing questions about the model and using the answers to improve the model (phase II).
The basis for these questions is—just like in OMHJ—an initial model. However, this model
is build automatically in the case of UCSCP. The result is applied in a final fourth phase in
both approaches. Collaboration of several users is a key element of OMHJ. It can be achieved
in UCSCP as well, but this is not the prime focus. The UCSCP also differs from OMHJ in
that is uses sample instances as the basis of modeling and also as a means for communication
with domain experts. The paradigm to be used for communication with domain experts is not
further elaborated by Holsapple and Joshi.

The On-To-Knowledge meta-process (section 2.2.3 or [SSSS01]) incorporates the develop-
ment of an ontology into application development. Its result is an ontology for the domain
of the application at hand. The process contains two iterative elements: refinement during
the development of the ontology and evolution of the ontology, which is modeled as a part of
application maintenance. During the refinement the domain expert gives input on the existing
concepts in the ontology. This input is formalized by a modeling expert, who is familiar with
the paradigm the ontology is expressed with. In the maintenance phase of the process, e.g.,
during the runtime of a system based on the created ontology, the need can arise to modify or
augment the ontology. This is done by controlled refinement in a re-execution of the refinement
phase. Both types of iteration can also be found in the UCSCP. The conceptual model is cre-
ated iteratively based on user feedback in phase III. The process can return to the beginning
from phase IV if the need for personalization or schema evolution arises. A central difference is
that most activities of the On-To-Knowledge meta process can only be carried out by modeling
experts.

Linguistic analysis is a methodology to obtain a conceptualization of a domain in textual
documentation [Abb83]. Texts are analyzed for keywords, which form the basis of domain
classes. In a second step attributes for and relationships between the classes are determined
by similar means. In object-oriented analysis, the basis for linguistic analysis can be found
in descriptions of use cases [Lar05, section 9.5]. The linguistic approach can also be applied
to scenarios describing behavior [FKM04]. It is assumed that the basis for textual analysis is
sufficiently verbose about the application domain to create a coherent domain model. If this
is not the case, additional completion steps have to be inserted into the process [FKM04] to
add the missing parts. In this expectation of completeness, linguistic analysis is similar to the
UCSCP. However, the UCSCP takes as input expressions, which are more formal than natural
language texts. This facilitates the extraction of relevant domain concepts, as it reduces the
amount of information noise. Filtering such noise is a major problem in text-based approaches
especially if the texts are written in a non-technical manner [AHKV98].

In general it can be observed that processes with a more formal approach to conceptual
schema creation also expect more formality from the domain experts. Linguistic analysis
requires relatively little formality in the input documents, which are given by domain experts.
The extraction of schema classes from these texts is inspirational and requires an intuitive
understanding of the application domain by the modeling expert. The UCSCP, which is based
on Asset Expressions, takes as input expressions which are more formal than text. In return
it can create conceptual schemata largely without input from a modeling expert.

9.3 Future Work

The modeling paradigms discussed in the comparison in the previous section can be divided into
two groups: those made for human users and those made for computers. Key differences of the
two groups are the degree of formality of the descriptions and the amount of information given
in the model instances. Figure 9.2 shows a graph of this situation by plotting the formality of
the model over the richness of its instances. Human users generally prefer models that only state
what the user does not know yet—incremental models with respect to the user’s contextual



9.3 FUTURE WORK 157

Figure 9.2: Modeling paradigms differ in the degree of formality as well as in the amount
of information conveyed in instances of the model ( richness). Machine interpretation requires
very rich and very formal models, human users are often more content with less formal models
that only state what they do not know, i.e., do not contain a complete model of the application
domain.

knowledge—and a lesser degree of formality. Machine-centric models are characterized by
a higher degree of formality, as well as more complete models, as contextual knowledge of
the machine is usually assumed to be very small. Asset Expressions, linguistic analysis, and
annotation techniques can be found towards the lower left corner in figure 9.2, descriptions using
strict ontological means such as OWL [BHH+02], RDF [Bec04], and other technologies in the
context of the semantic web towards the upper right. A common criticism of this division into
human-centric and machine-centric modeling approaches is the necessity to provide duplicate
descriptions using several description means in many cases. In fact, if one considers that not
all members of the target audience—irrespective of whether they are computers or humans—
share the same contextual knowledge, the need for even more descriptions of multiple levels of
richness can arise. Asset Expressions take first steps towards providing multi-richness models
by allowing the re-use of existing (less rich) models in enhanced descriptions. However, this
is a one-way approach as there is no convenient way of weeding-out overly rich descriptions.
Integration with computer-centric descriptions is also not straight-forward.

To reduce the need for redundant descriptions in order to suit various target audiences, an
integrated model from which various descriptions can be created would be of great interest.
This integrated model needs to support the creation of views on the descriptions. These views
contain the right amount of information for their target audience and are expressed with an
appropriate degree of formality. Based on their preferred view, users can then choose a matching
interface paradigm (e.g., visual notation for humans or an object-representation for computers)
to work with. Besides creating an integrated model, a major difficulty is the definition of views
on descriptions. As the underlying integrated description needs to provide very complete
information in order to satisfy the needs of even the most specific view, the view definition has
to specify which parts to drop. Dropping too little makes it tedious for the user to discover the
interesting parts of the description as the overlap with the user’s contextual knowledge is very
high. Dropping too much renders the description useless as there remain no points of contact
which allow the user to integrate the description with present contextual knowledge. The latter
is especially true for machine users. An approach to a solution could be the classification of the
parts of descriptions according to Panofsky’s levels of description (table 1.2 and [Pan70]) into
pre-iconographical, iconographical, and iconological descriptions. Human users could then, for
example, state in their views to remove pre-iconographical information as well as iconographical
parts from domains they are familiar with. If the user is an expert in a particular domain, it
might also be appropriate to drop iconological parts from this domain.



158 CHAPTER 9: SUMMARY AND DISCUSSION

If views can be used to express the underlying descriptions in several paradigms, efforts
will be needed to overcome the mismatches between the paradigms. Different types of con-
ceptualization can cause great mismatch: Asset Expressions use semantic types, which have
no structural consequences, but many ontological approaches as well as conceptual models use
intensional classes for conceptualization. Converting between these is certainly non-trivial and
possibilities need to be investigated carefully, see chapter 6. Another common mismatch is the
assumption made about the completeness of the model. Open world models assume that the
model is incomplete such that one cannot, for example, draw conclusions on the existance of
real-world entities from the absence of corresponding instances in the model. On the contrary,
closed world models assume that all relevant real-world entities are also present in the model.
Some research is being done on the alignment of the two views by restrictions on the modeling
formalism. Open-world description logics (DL) and closed-world Horn rules can be combined
by requiring that every rule variable occurs in a non-DL-atom in the body of the rule [MSS05].

Ontological modeling means overlap with the functionality of Asset Expressions. Quite
some knowledge is already codified in ontologies. Therefore making ontologies interoperable
with or at least accessible from Asset Expressions is an interesting topic. Ontological modeling
methodologies do not focus on medial descriptions but rather on structural ones as do for
example the narrative worlds of MPEG-7. These are also a good example of existing integration
with medial content.

Automation in Asset Expression Systems (AESs) can also be extended beyond the sugges-
tion of semantic types by integrating existing work. Content components can be discovered
automatically [HPS99, MYR03, PVS+06] providing the user with starting points for abstrac-
tions. This matches well with the notion of function signatures which abstract variables that
are readily available in the body of the function. When creating a signature for a function,
one does not have to first introduce the variables, but these are already present. In manually
created Asset Expressions, however, the creator of the expression first has to provide the vari-
ables in the form of content components before abstractions can be made on them. Automatic
segmentation of content into components provides the creators of expressions with variables
to chose from. Naturally, not all variables will appear in the signature. For limited domains
the segmantation can even classify the component—in Asset Expression terms by suggesting a
semantic type for it [BDF+03].

Users can collaborate in AESs by referencing each other’s expressions. This is currently only
possible in a single system. It can, however, be expected that some expressions that are created
during one project for a certain application domain can be reused in other projects dealing with
related application domains. It is unlikely that all these projects can be carried out within
the same system. Therefore, transferral of expressions to new projects and thereby to other
systems would be beneficial. This raises questions of how the logistics of such transfers can be
handled, i.e., how they affect the lifecycle of expressions in the original and remote systems.
Collaborative distributed processes can be used to add value to content [SS99]. An expression
is created in a certain context with a particular audience in mind. After it is transferred to
another context its audience might be different, making it necessary to extend the contextual
knowledge of the new audience to ensure understandability of the expression. This could,
for example, be achieved by also transferring related expressions that contain the necessary
additional information along with the expression. If carried out automatically the problems
created here by gaps in contextual information are similar to those when defining views as
described above. These issues in the logistics of entities can be attacked via entity-closures
which describe the relevant context of an entity [Hup07]. This closure needs to be carried
along to the target system.

Most conceptual schemata can express constraints on their instances. In fact, typing can
also be interpreted as a special type of constraint [AWL94]. In conceptual schemata constraints
are usually given on class level. They define conditions an instance has to meet in order to
be a member of the class. Such definitions on class level allow convenient handling of a large



9.3 FUTURE WORK 159

number of instances. However, in other areas constraints on instance level are also used, for
example in clustering [WC00] or to allow simplified constraint definition by users [Bor86]. As
an Asset Expression in general is not a member of a class, constraints need to be defined on
expression level. This can either happen truely individually or constraints can be defined in
traits to influence expressions created by trait. Interesting types of constraints include the
restriction of application operands, the specification of a set of abstractions (as available in
traits now), or the demand of particular content components. Because Asset Expressions do
not have any built-in domains of literal values (e.g., natural numbers or character strings),
constraints presently cannot be formulae that are based on computations in these domains.
An interesting option would be to permanently associate constraints to an expression name.
While the expression referenced by that name can still be redefined, all new bindings also need
to satisfy the constraints. This can ensure the permanent applicability of expressions by this
name in the context of all expressions the name is referenced from.

The UCSCP aids domain experts in creating a conceptual schema for a domain they have
modeled in Asset Expressions. The expressions used in the process might have been created
by multiple users, but the process itself needs to be run by a single user. This user then has
to answer questions from the system, has to be trusted to detect any errors introduced during
automatic schema construction, and has to be able to make all additional modifications either
to the schema directly or to the expressions that favorably influence the final schema. These
assumptions mean that a single user—or a group of users in one physical location—have to
understand all aspects of the application domain well enough to take the required decisions.
If a distributed team of users would like to collaboratively create a schema, some additional
support from the system is required. First, the system needs to aggregate the expressions of
all users, which is possible in current AESs. Second, the schema creation process itself must be
implemented in a physically distributed manner. The current three-layer architecture of AESs
is not sufficient for this as additional requirements arise in collaborative work on schemata
such as concurrent modification issues and updates of distributed data [RR98]. Furthermore,
communication among users needs to be encouraged. Such communication is much more
difficult in a distributed setup than in a face-to-face scenario due to limited communication
channels. Tools for collaborative distributed work on schemata have been proposed [RR98,
CPP06]. Their incorporation into the interface for execution of the UCSCP can allow physically
distributed schema creation.

The Asset Expression approach can be applied recursively to itself by using not just any
content but providing an Asset Expression in the content. Abstractions over this content then
talk about parts of the “content-expression”. This can be used to annotate expressions with
various information, for example to facilitate collaboration. A selector language to address parts
of Asset Expressions that are used as content is already in place: the Asset Expression Query
Language. It can address any part of an expression, making it a good choice to implement
selectors. An application example for higher-order Asset Expressions are user manuals that
explain how to work with the Asset Expression approach or scenarios that capture expression
provenance explicitly. Higher-order expressions can also be used to express traits by means to
the cut and use component handlings.



160 CHAPTER 9: SUMMARY AND DISCUSSION



Bibliography

[Abb83] Russell J. Abbott. Program design by Informal English Descriptions. Com-
munications of the ACM, volume 26, no. 11; pages 882–894. 1983.

[ABCWM99] Jacky Akoka, Mokrane Bouzeghoub, Isabelle Comyn-Wattiau, and
Elisabeth Métais (editors). Conceptual Modeling - ER ’99, 18th International
Conference on Conceptual Modeling, Paris, France, November, 15-18, 1999, Pro-
ceedings, volume 1728 of Lecture Notes in Computer Science. Springer. 1999.

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer Verlag. 1996.

[Ado04] Adobe Systems Incorporated. PDF Reference. Internet
http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf.
Accessed 10 Jan 2007. 2004.

[AFO05] Maristella Agosti, Nicola Ferro, and Nicola Orio. Annotating Illumi-
nated Manuscripts: An Effective Tool for Research and Education. In JCDL
’05: Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries,
pages 121–130. ACM Press, New York, NY, USA. 2005.

[AHKV98] Helena Ahonen, Oskari Heinonen, Mika Klemettinen, and A. Inkeri

Verkamo. Applying Data Mining Techniques for Descriptive Phrase Extrac-
tion in Digital Document Collections. In Proceedings of the Advances in Digital
Libraries Conference, ADL ’98, pages 2–11. 1998.

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Meta-
modeling Foundation. IEEE Software, volume 20, no. 5; pages 36–41. 2003.

[AL04] Marcelo Arenas and Leonid Libkin. A Normal Form for XML Documents.
ACM Transactions on Database Systems, volume 29, no. 1; pages 195–232. 2004.

[All87] Lloyd Allison. A Practical Introduction to Denotational Semantics. Cam-
bridge computer science texts. Cambridge University Press. 1987.

[Amb03] Scott W. Ambler. Agile Database Techniques. Wiley. 2003.

[ART90] Malcolm P. Atkinson, Philippe Richard, and Philip W. Trinder. Bulk
Types for Large Scale Programming. In East/West Database Workshop, pages
228–250. 1990.

[AS83] Dana Angluin and Carl H. Smith. Inductive Inference: Theory and Methods.
ACM Computing Surveys, volume 15, no. 3; pages 237–269. 1983.

[ASE02] Technical Standardization Committee on AV, IT Storage Systems,
and Equipment. Exchangeable Image File Format for Digital Still Cameras:
EXIF Version 2.2. http://www.exif.org/Exif2-2.PDF. 2002.

161



162 BIBLIOGRAPHY

[AW85] Maryam Alavi and Ira R. Weiss. Managing the Risks Associated with End-
User Computing. Jornal of Management Information Systems, volume 2, no. 3;
pages 5–20. 1985.

[AWL94] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft Typ-
ing with Conditional Types. In Proceedings of the Conference on Principles of
Programming Languages, pages 163–173. 1994.

[Bar85] Hendrik Pieter Barendregt. The Lambda Calculus. Studies in Logic and
the Foundations of Mathematics. North-Holland. 1985.

[BB04] Alexander Borgida and Ronald J. Brachman. Description Logics Hand-
book, chapter Conceptual Modeling with Description Logics, pages 359–381.
Cambridge University Press. 2004.

[BBF+02] Marcia J. Bates, Harry Bruce, Raya Fidel, Peter Ingwersen, and
Pertti Vakkari. Speculations on browsing, directed searching, and linking in
relation to the Bradford distribution. In CoLIS 4 : fourth international confer-
ence on conceptions of library and information science : emerging frameworks
and methods. Seattle WA. 2002.

[BCF+05] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-
guage. Internet http://www.w3.org/TR/xquery/. Accessed 30 December 2006.
2005.

[BCM99] Paolo Bottoni, Maria Francesca Costabile, and Pierro Mussio. Spec-
ification and dialogue control of visual interaction through visual rewriting sys-
tems. ACM Transactions Programming Languages and Systems, volume 21,
no. 6; pages 1077–1136. 1999.

[BDF+03] Kobus Barnard, Pinar Duygulu, David Forsyth, Nando de Freitas,
David M. Blei, and Michael I. Jordan. Matching words and pictures. J.
Mach. Learn. Res., volume 3; pages 1107–1135. 2003.

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised). Internet
http://www.w3.org/TR/rdf-syntax-grammar/. Accessed 18 October 2006. 2004.

[Ber03] Philip A. Bernstein. Applying Model Management to Classical Meta Data
Problems. In First Conference on Innovative Data Systems Research 2003. 2003.

[BHH+02] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Hor-

rocks, Deborah L. MucGuinness Peter F. Patel-Schneider, and
Lynn Andrea Stein. OWL Web Ontology Language 1.0. Internet
http://www.w3.org/TR/owl-ref/. Accessed 16 Dec 2006. 2002.

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin.
Namespaces in XML 1.0 (Second Edition). http://www.w3.org/TR/REC-xml-
names/. 2006.

[BJJW97] Magnus Boman, Janis A. Bubenko Jr., Paul Johannesson, and Benkt

Wangler. Conceptual Modelling. Prentice Hall. 1997.

[BLCGP92] Tim Berners-Lee, Robert Cailliau, Jean-Francois Groff, and Bernd

Pollermann. World-Wide Web: The Information Universe. Electronic Net-
working: Research, Applications and Policy, volume 1, no. 2; pages 74–82. 1992.



BIBLIOGRAPHY 163

[BLFM05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource
Identifier (URI): Generic Syntax. Request for Comments 3986. 2005.

[BLHL01] Tim Berners-Lee, James Handler, and Ora Lassila. The Semantic Web.
Scientific American, pages 34–43. 2001.

[BMNPS04] Franz Bader, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider (editors). Description Logics Handbook. Cambridge Univer-
sity Press. 2004.

[BMS84] Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt (ed-
itors). On Conceptual Modelling: Perspectives from Artificial Intelligence,
Databases, and Programming Languages. Topics in Information Systems.
Springer-Verlag. 1984.

[BN04] Paul De Bra and Wolfgang Nejdl (editors). Adaptive Hypermedia and
Adaptive Web-Based Systems, Third International Conference, AH 2004, Pro-
ceedings, volume 3137 of Lecture Notes in Computer Science. Springer. 2004.

[Boe07] Boemie Project. Project website. Internet http://www.boemie.org/. Accessed
16 Jan 07. 2007.

[Bor85] Alexander Borgida. Features of Languages for the Development of Informa-
tion Systems at the Conceptual Level. ICCC Software, volume 2, no. 1. 1985.

[Bor86] Alan Borning. Defining constraints graphically. ACM SIGCHI Bulletin, vol-
ume 17, no. 4; pages 137–143. 1986.

[Bos04] Sebastian Bossung. Generating Schema Information for Views over Semi-
structured Data. Master’s thesis, Technische Universität Hamburg-Harburg.
2004.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
Fran cois Yergeau, and John Cowan. XML 1.1 (Second Edition). Inter-
net http://www.w3.org/TR/2006/REC-xml11-20060816/. Accessed 18 October
2006. 2006.

[Bra95] Rebecca W. Bray. USML-2 Astronauts. Internet
http://liftoff.msfc.nasa.gov/Shuttle/USML2/crew/crew.html. Accessed 10
Jan 2007. 1995.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley. 1999.

[Bru72] Nicolaas de Bruijn. Lambda-calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indagationes Mathematicae, volume 5, no. 34; pages 381–392. 1972.

[BS82] Michael L. Brodie and Joachim W. Schmidt. Final Report of the AN-
SI/X3/SPARC DBS-SG Relational Database Task Group. SIGMOD Record,
volume 12, no. 4; pages i–62. 1982.

[BSG+04] Sebastian Bossung, Hermann Stoeckle, John C. Grundy, Robert

Amor, and John G. Hosking. Automated Data Mapping Specification via
Schema Heuristics and User Interaction. In Proceedings of the Automated Soft-
ware Engineering Conference, 2004, pages 208–217. IEEE Computer Society.
2004.



164 BIBLIOGRAPHY

[BSHS06] Sebastian Bossung, Hans-Werner Sehring, Patrick Hupe, and
Joachim W. Schmidt. Open and Dynamic Schema Evolution in Content-
Intensive Web Applications. In Cordeiro et al. [CPEF06], pages 109–116. 2006.

[BSS05] Sebastian Bossung, Hans-Werner Sehring, and Joachim W. Schmidt.
Conceptual Content Management for Enterprise Web Services. In J. Akoka,
S.W. Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, W.-J.

van den Heuvel, M. Kolp, J. Trujillo, C. Kop, and H.C. Mayr (ed-
itors), Perspectives in Conceptual Modeling, volume 3770 of Lecture Notes in
Computer Science, pages 343–353. Springer-Verlag. 2005.

[BSSS05] Sebastian Bossung, Hans-Werner Sehring, Michael Skusa, and
Joachim W. Schmidt. Conceptual Content Management for Software En-
gineering Processes. In Johann Eder, Hele-Mai Haav, Ahto Kalja, and
Jaan Penjam (editors), Advances in Databases and Information Systems, 2005,
volume 3631 of Lecture Notes in Computer Science, pages 309–324. Springer-
Verlag. 2005.

[Bun97] Peter Buneman. Semistructured Data. In Principles of Database Systems,
pages 117–121. ACM Press. 1997.

[Bus45] Vannevar Bush. As We May Think. The Atlantic Monthly, volume 176, no. 1;
pages 101–108. 1945.

[BVA+97] Michael Bieber, Fabio Vitali, Helen Ashman, Venkatraman Bala-

subramanian, and Harri Oinas-Kukkonen. Fourth generation hypermedia:
some missing links for the World Wide Web. International Journal of Human-
Computer Studies, volume 47, no. 1; pages 31–65. 1997.

[BVNK01] Peter Bosch, Arjen de Vries, Niels Nes, and Martin Kersten. A Case
for Image Quering through Image Spots. In Storage and Retrieval for Media
Databases 2001, volume 4315 of Proceedings of SPIE, pages 20–30. San Jose,
USA. 2001.

[CACW02] Samira Si-Said Cherfi, Jacky Akoka, and Isabelle Comyn-Wattiau.
Conceptual Modeling Quality - From EER to UML Schemas Evaluation. In
Spaccapietra et al. [SMK02], pages 414–428. 2002.

[Cas00] Ernst Cassirer. The Logic of the Cultural Scienes. Yale University Press, New
Haven. 2000.

[Cas01] Ernst Cassirer. Die Sprache, volume 11 of Philosophie der symbolischen For-
men. Felix Meiner Verlag GmbH. 2001.

[Cas05] David Plans Casal. Advanced Software Development for Web Applications.
Technical Report TSW0505, JISC Technology and Standards Watch. 2005.

[Cat94] R.G.G. Cattel (editor). The Object Database Standard ODMG-93. Morgan
Kaufman. 1994.

[CCC+04] Andrea Cal̀ı, Diego Calvanese, Simona Colucci, Tommaso Di Noia,
and Francesco M. Donini. A Description Logic Based Approach for Matching
User Profiles. In Volker Haarslev and Ralf Möller (editors), Description
Logic Workshop, 2004, pages 110–119. 2004.



BIBLIOGRAPHY 165

[CCFS95] M. Sheelagh T. Carpendale, David J. Cowperthwaite, F. David Frac-

chia, and Thomas C. Shermer. Graph Folding: Extending Detail and Con-
text Viewing into a Tool for Subgraph Comparisons. In Franz J. Branden-

burg (editor), Proc. 3rd Int. Symp. Graph Drawing, GD, 1027, pages 127–139.
Springer-Verlag, Berlin, Germany. 1995.

[Che76] Peter P. Chen. The Entity-Relationship Model – Toward a Unified View of
Data. ACM Transactions on Database Systems, volume 1, no. 1; pages 9–36.
1976.

[CKM02] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards
requirements-driven information systems engineering: the Tropos project. In-
formation Systems, volume 27, no. 6; pages 365–389. 2002.

[CMF96] Yves Chiaramella, Philippe Mulhem, and Franck Fourel. A model of
multimedia information retrieval. Technical Report FERMI ESPRIT BRA 8134,
University of Glasgow. 1996.

[CNS+04] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Marina

Mongiello, and Francesco M. Donini. Concept abduction and contrac-
tion for semantic-based discovery of matches and negotiation spaces in an e-
marketplace. In ICEC ’04: Proceedings of the 6th international conference on
Electronic commerce, pages 41–50. ACM Press, New York, NY, USA. 2004.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, volume 13, no. 6; pages 377–387. 1970.

[Con87] Jeff Conklin. Hypertext: An Introduction and Survey. IEEE Computer,
volume 20, no. 9; pages 17–41. 1987.

[CPEF06] José A. Moinhos Cordeiro, Vitor Pedrosa, Bruno Encarnação, and
Joaquim Filipe (editors). WEBIST 2006, Proceedings of the Second Inter-
national Conference on Web Information Systems and Technologies: Internet
Technology / Web Interface and Applications, Setúbal, Portugal, April 11-13,
2006. INSTICC Press. 2006.

[CPP06] Weiqin Chen, Roger Pedersen, and Øystein Pettersen. Building UML
Models Collaboratively. In José A. Moinhos Cordeiro, Vitor Pedrosa,
Bruno Encarnação, and Joaquim Filipe (editors), WEBIST 2006, Proceed-
ings of the Second International Conference on Web Information Systems and
Technologies (2), pages 106–111. INSTICC Press. 2006.

[CR94] Vassilis Christophides and Antoine Rizk. Querying Structured Documents
with Hypertext Links using OODBMS. In European Conference on Hypertext,
pages 186–197. 1994.

[CR03] Youngok Choi and Edie M. Rasmussen. Searching for images: The analysis
of users’ queries for image retrieval in American history. JASIST, volume 54,
no. 6; pages 498–511. 2003.

[CRD87] James H. Coombs, Allen H. Renear, and Steven J. DeRose. Markup
systems and the future of scholarly text processing. Communications of the
ACM, volume 30, no. 11; pages 933–947. 1987.

[DBO06] Patrick Durusau, Michael Brauer, and Lars Oppermann. Open Docu-
ment Format for Office Applications. OASIS draft. 2006.



166 BIBLIOGRAPHY

[DKM+05] Lois M. L. Delcambre, Christian Kop, Heinrich C. Mayr, John My-

lopoulos, and Oscar Pastor (editors). Conceptual Modeling - ER 2005, 24th
International Conference on Conceptual Modeling, Klagenfurt, Austria, October
24-28, 2005, Proceedings, volume 3716 of Lecture Notes in Computer Science.
Springer. 2005.

[DM99] Lois M. L. Delcambre and David Maier. Models for Superimposed Infor-
mation. In ER ’99: Proceedings of the Workshops on Evolution and Change in
Data Management, Reverse Engineering in Information Systems, and the World
Wide Web and Conceptual Modeling, pages 264–280. Springer-Verlag, London,
UK. 1999.

[DMFP05] Isabel D́ıaz, Lidia Moreno, Inmaculada Fuentes, and Oscar Pastor.
Integrating Natural Language Techniques in OO-Method. In Alexander F.

Gelbukh (editor), CICLing, volume 3406 of Lecture Notes in Computer Science,
pages 560–571. Springer. 2005.

[Dor03] Dov Dori. The Visual Semantic Web: Unifying Human and Machine Semantic
Web Representations with Object-Process Methodology. In Isabel F. Cruz,
Vipul Kashyap, Stefan Decker, and Rainer Eckstein (editors), Semantic
Web and Databases Workshop, pages 415–433. 2003.

[DT89] János Demetrovics and Bernhard Thalheim (editors). MFDBS 89, 2nd
Symposium on Mathematical Fundamentals of Database Systems, Visegrád, Hun-
gary, June 26-30, 1989, volume 364 of Lecture Notes in Computer Science.
Springer. 1989.

[DTOP02] Magali Dubosson-Torbay, Alexander Osterwalder, and Yves

Pigneur. eBusiness Model Design, Classification and Measurements. Thun-
derbird International Business Review, volume 44, no. 1; pages 5–23. 2002.

[Ell04] James Elliott. Hibernate: A Developer’s Notebook. OREILLY. 2004.

[EMK+04] Andrew Eisenberg, Jim Melton, Krishna G. Kulkarni, Jan-Eike

Michels, and Fred Zemke. SQL: 2003 has been published. SIGMOD Record,
volume 33, no. 1; pages 119–126. 2004.

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Sys-
tems, 2nd Edition. Benjamin/Cummings. 1994.

[EP00] José Esteves and Joan Antoni Pastor. Enterprise Resource Planning Sys-
tems Research: An Annotated Bibliography. Communications of Association for
Information Systems, volume 7, no. 8; pages 1–52. 2000.

[ES00] Michael Erdmann and Rudi Studer. How to Structure and Access XML
Documents With Ontologies. Data and Knowledge Engineering. 2000.

[eXi] eXist – Open Source Native XML Database. Website http://www.exist-db.org/.
Accessed 19 October 2006.

[Fel98] Christiane Fellbaum (editor). WordNet: An Electronic Lexical Database.
The MIT Press. 1998.

[FFM04] Daniela Fogli, Giuseppe Fresta, and Piero Mussio. On Electronic An-
notation and its Implementation. In Maria Francesca Costabile (editor),
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2004,
pages 98–102. ACM Press. 2004.



BIBLIOGRAPHY 167

[FKM04] Günther Fliedl, Christian Kop, and Heinrich C. Mayr. From Textual
Scenarios to a Conceptual Schema. Data & Knowledge Engineering, volume 55,
no. 1; pages 20–37. 2004.

[Fow04] Martin Fowler. UML Distilled. Addison-Wesley, 3 edition. 2004.

[FW04] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer
Second Edition. Internet http://www.w3.org/TR/xmlschema-0/. Accessed on
15 Dec 2006. 2004.

[Gar65] Newton Garver. Varieties of Use and Mention. Philosophy and Phenomeno-
logical Research, volume 26, no. 2; pages 230–238. 1965.

[GB05] Margaret Graham and Christopher Bailey. Digital Images and Art His-
torians – Compare and Contrast Revisited. In Proceedings of Digital Resources
for the Humantities 2005, pages 21–24. 2005.

[GBC+01] Carole A. Goble, Sean Bechhofer, Les Carr, David De Roure, and
Wendy Hall. Conceptual Open Hypermedia = The Semantic Web? In Stefan

Decker, Dieter Fensel, Amit Sheth, and Steffen Staab (editors), The
Second International Workshop on the Semantic Web. 2001.

[GGR+00] Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri,
and Kyuseok Shim. XTRACT: A System for Extracting Document Type De-
scriptors from XML Documents. In Weidong Chen, Jeffrey F. Naughton,
and Philip A. Bernstein (editors), SIGMOD Conference, pages 165–176.
ACM. 2000.

[GH04] Joseph Goguen and Fox Harrell. Foundations for Active Multi-
media Narrative: Semiotic spaces and structural blending. Internet at
http://www.cs.ucsd.edu/users/goguen/pps/narr.pdf. Accessed 20 Mar 2007.
2004.

[GJP00] Marcela Genero, Luis Jiménez, and Mario Piattini. Measuring the Qual-
ity of Entity Relationship Diagrams. In Delcambre et al. [DKM+05], pages
513–526. 2000.

[GNA99] Mohamed M. Gammoudi, Ibtissem Nafkha, and Z. Abdelouahab. An In-
cremental and Semi-automatic Method Inheritance Graph Hierarchy Construc-
tion. In Akoka et al. [ABCWM99], pages 31–46. 1999.

[Gog04] Joseph A. Goguen. Ontology, Society, and Ontotheology. In Achille Varzi

and Laure Vieu (editors), Proceedings of the International Conference on For-
mal Ontologies in Informatin Systems, pages 95–103. IOS Press. 2004.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Oxford University Press. 1990.

[GPFLC04] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Cor-

cho. Ontological Engineering. Springer. 2004.

[Gru93] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used
for Knowledge Sharing. International Journal of Human-Computer Studies, vol-
ume 43, no. 5-6; pages 907–928. 1993.

[GS01] Michael Gertz and Kai-Uwe Sattler. A Model and Architecture for Con-
ceptualized Data Annotations. Technical Report CSE-2001-11, Department of
Computer Science, University of California. 2001.



168 BIBLIOGRAPHY

[GS02] Michael Gertz and Kai-Uwe Sattler. Integrating Scientific Data through
External, Concept-based Annotations. In Zoé Lacroix (editor), Second Inter-
national Workshop Data Integration over the Web, pages 87–102. University of
Toronto Press. 2002.

[GSG+02] Michael Gertz, Kai-Uwe Sattler, Fred Gorin, Michael Hogarth,
and Jim Stone. Annotating Scientific Images: A Concept-based Approach.
In 14th International Conference on Scientific and Statistical DatabaseManage-
ment, pages 59–68. IEEE Computer Society. 2002.

[GST00] Dina Q. Goldin, Srinath Srinivasa, and Bernhard Thalheim. IS = DBS
+ Interaction: Towards Principles of Information System Design. In Delcambre

et al. [DKM+05], pages 140–153. 2000.

[Gua98] Nicola Guarino. Formal Ontology in Information Systems. In N. Guarino

(editor), Proceedings of the 1st International Conference on Formal Ontologies
in Information Systems, pages 3–15. Trento, Italy. 1998.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases. In Matthias Jarke,
Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Per-

icles Loucopoulos, and Manfred A. Jeusfeld (editors), VLDB’97, Pro-
ceedings of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pages 436–445. Morgan Kaufmann. 1997.

[GW02] Nicola Guarino and Christopher A. Welty. Evaluating Ontological De-
cisions with OntoClean. Communications of the ACM, volume 45, no. 2; pages
61–65. 2002.

[GWG06] Andreas Gruber, Rupert Westenthaler, and Eva Gahleitner. Sup-
porting Domain Experts in Creating Formal Knowledge Models (Ontologies).
In Klaus Tochtermann und Hermann Maurer (editor), Proceedings of
I-KNOW’06. 6th International Conference on knowledge management (2006),
pages 252–260. Graz, Austria. 2006.

[Hal01] Terry Halpin. Information Modeling and Relational Databases: From Concep-
tual Analysis to Logical Design. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann. 2001.

[HBHV04] Samira Hammiche, Salima Benbernou, Mohand-Said Hacid, and
Athena Vakali. Semantic Retrieval of Multimedia Data. In MMDB ’04: Pro-
ceedings of the 2nd ACM international workshop on Multimedia databases, pages
36–44. ACM Press, New York, USA. 2004.

[HBR93] Lynda Hardman, Dick C. A. Bulterman, and Guido van Rossum. Links
in Hypermedia: The Requirement for Context. In Hypertext, pages 183–191.
ACM. 1993.

[HG02] Farshad Hakimpour and Andreas Geppert. Global Schema Generation
Using Formal Ontologies. In Spaccapietra et al. [SMK02], pages 307–321.
2002.

[HJ02] Clyde W. Holsapple and Kshiti D. Joshi. A Collaborative Approach to
Ontology Design. Communications of the ACM, volume 45, no. 2; pages 42–47.
2002.



BIBLIOGRAPHY 169

[HKM93] Gerd G. Hillebrand, Paris C. Kanellakis, and Harry G. Mairson.
Database Query Languages Embedded in the Typed Lambda Calculus. In IEEE
Symposium on Logic in Computer Science, pages 332–343. IEEE Computer So-
ciety. 1993.

[HP02] Stefan Haustein and Jörg Pleumann. Is Participation in the Semantic Web
Too Difficult? In Ian Horrocks and James A. Hendler (editors), Inter-
national Semantic Web Conference, volume 2342 of Lecture Notes in Computer
Science, pages 448–453. Springer. 2002.

[HP06] Jerry R. Hobbs and Feng Pan. Time Ontology in OWL. Internet
http://www.w3.org/TR/owl-time/. Accessed 1 Nov 2006. 2006.

[HPS99] Knut Hartmann, Bernhard Preim, and Thomas Strothotte. Describing
Abstraction in Rendered Images through Figure Captions. Electronic Transac-
tions on Artificial Intelligence, volume 3, no. A; pages 1–26. 1999.

[HTS+06] Alaa Halawani, Alexandra Teynor, Lokesh Setia, Gerd Brunner,
and Hans Burkhardt. Fundamentals and Applications of Image Retrieval:
An Overview. Datenbank-Spektrum, volume 18; pages 14–23. 2006.

[Hun01] Jane Hunter. Adding Multimedia to the Semantic Web: Building an MPEG-
7 Ontology. In Proceedings of the 1st International Semantic Web Working
Symposium, pages 261–283. 2001.

[Hup07] Patrick Hupe. Prozesse über heterogenen Arbeitsumgebungen: Asset-basiertes
Modell und Systemarchitektur. Ph.D. thesis, Techische Universität Hamburg-
Harburg. To appear. 2007.

[HYG99] Klaus Marius Hansen, Christian Yndigegn, and Kaj Grønbæk. Dy-
namic Use of Digital Library Material - Supporting Users with Typed Links in
Open Hypermedia. In Serge Abiteboul and Anne-Marie Vercoustre (edi-
tors), ECDL, volume 1696 of Lecture Notes in Computer Science, pages 254–273.
Springer. 1999.

[Int01] International Organisation of Standardisation. Information Technol-
ogy – Multimedia Content Description Interface – Part 4: Audio. 15938-
4:2001(E). 2001.

[Int04] International Organisation for Standardisation. MPEG-7 Overview.
Internet http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm.
Accessed 15 Dec 2006. 2004.

[Kat05] Susumu Katayama. Systematic Search for Lambda Expressions. In Sixth Sym-
posium on Trends in Functional Programming (TFP2005), pages 195–205. 2005.

[Kei94] Lucinda H. Keister. User Types and Queries: Impact on Image Access Sys-
tems. In Raya Fidel, Trudi Bellardo Hahn, Edie M. Rasmussen, and
Philip Philip J. Smith (editors), Challenges in Indexing Electronic Text and
Images, pages 7 – 22. 1994.

[Kes02] Stephan Kesper. A Proof of the Turing-completeness of XSLT and XQuery.
Technical report, University of Tübingen. 2002.

[KM05] Hyoung-Gook Kim and Nicolas Moreau. MPEG-7 Audio and Beyond. John
Wiley & Sons, Ltd. 2005.



170 BIBLIOGRAPHY

[Kos02] Harald Kosch. MPEG-7 and Multimedia Database Systems. SIGMOD
Record, volume 31, no. 2; pages 34–39. 2002.

[KS98] Vipul Kashyap and Amit Sheth. Semantic Heterogeneity in Global Infor-
mation System: The Role of Metadata, Context and Ontologies. In M. Pa-

pazoglou and G. Schlageter (editors), Cooperative Information Systems:
Current Trends and Directions. Academic Press, London. 1998.

[KS03] Yannis Kalfoglou and Marco Schorlemmer. Ontology Mapping: The
State of the Art. Knowledge Engineering Review, volume 18, no. 1; pages 1–31.
2003.

[Kwa92] Barbara H. Kwasnik. A Descriptive Study of the Functional Components
of Browsing. In Proceedings of the IFIP TC2/WG2.7 Working Conference on
Engineering for Human-Computer Interaction, pages 191–203. North-Holland.
1992.

[Lam86] Leslie Lamport. Latex: A Document Preparation System. Addison-Wesley.
1986.

[Lar05] Craig Larman. Object-oriented Analsyis and Design and Iterative Develop-
ment. Prentice Hall, 3 edition. 2005.

[Lay88] Sara Shatford Layne. Analyzing the Subject of a Picture: A Theoretical
Approach. Cataloguing and Classication, volume 6; pages 39–62. 1988.

[LBF+06] C. Lutz, F. Baader, E. Franconi, D. Lembo, R. Möller, R. Rosati,
U. Sattler, B. Suntisrivaraporn, and S. Tessaris. Reasoning Support
for Ontology Design. In B. Cuenca Grau, P. Hitzler, C. Shankey, and
E. Wallace (editors), In Proceedings of the second international workshop
OWL: Experiences and Directions. To appear. 2006.

[LBK03] Mathias Lux, Jutta Becker, and Harald Krottmaier. Caliph & Emir:
Semantic Annotation and Retrieval in Personal Digital Photo Libraries. In
CAiSE 03 Forum at 15th Conference on Advanced Information Systems En-
gineering, pages 85–89. Velden, Austria. 2003.

[LF75] Harold A. Lindstone and Murray Furoff. The Delphi Method: Techniques
and Applications. Addison-Wesley. 1975.

[LF01] Simon Lok and Steven Feiner. A Survey of Automated Layout Techniques
for Information Presentations. In Proceedings of the International Symposium
on Smart Graphics 2001, pages 61–68. 2001.

[LÖSO97] John Z. Li, M. Tamer Özsu, Duane Szafron, and Vincent Oria. MOQL:
A Multimedia Object Query Language. Technical Report TR-97-01, Department
of Computing Science, University of Alberta. 1997.

[LS87] Peter C. Lockemann and Joachim W. Schmidt (editors). Datenbankhand-
buch. Springer. 1987.

[Man91] Rainer Manthey. Towards a Unified View of Query- and Update-driven In-
ference in Deductive Databases. In DAISD, pages 220–224. 1991.

[Mar88] Karen Markey. Access to Iconographical Research Collections. Library
Trends, volume 37, no. 2; pages 154–174. 1988.



BIBLIOGRAPHY 171

[Mar02a] Jose M. Martinez. MPEG-7: Overview of MPEG-7 Description Tools, Part
2. IEEE Multimedia, pages 83–93. 2002.

[Mar02b] Jose M. Martinez. MPEG-7: The Generic Multimedia Description Standard,
Part 1. IEEE Multimedia, pages 78–87. 2002.

[Mat93] Florian Matthes. Persistente Objektsysteme. Springer Verlag. 1993.

[May02] Heinrich C. Mayr. Do We Need an Ontology of Ontologies? In Spaccapietra

et al. [SMK02], page 15. 2002.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling Ob-
ject, Relations and XML in the .NET Framework. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data,
pages 706–706. ACM Press, New York, NY, USA. 2006.

[McG03] Deborah L. McGuinness. Ontologies Come of Age. In Dieter Fensel,
James A. Hendler, Henry Lieberman, and Wolfgang Wahlster (edi-
tors), Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential, pages 171–194. MIT Press. 2003.

[McL94] Marshall McLuhan. Understanding Media: The Extensions of Man. The
MIT Press, Cambridge. 1994.

[McL02] Brett McLaughlin. Java & XML Data Binding. O’Reilly. 2002.

[MCM05] Jean Martinet, Yves Chiaramella, and Philippe Mulhem. A Model for
Weighting Image Objects in Home Photographs. In Otthein Herzog, Hans-

Jörg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken

(editors), Proceedings of the ACM Conference on Information and Knowledge
Management, pages 760–767. ACM. 2005.

[Mec95] Mourad Mechkour. A Multifacet Formal Image Model for Information Re-
trieval. In Ian Ruthven (editor), Proceedings of the Workshop on Multimedia
Information Retrieval, Workshops in Computing. BCS. 1995.

[Mei02] Wolfgang Meier. eXist: An Open Source Native XML Database. In Ak-

mal B. Chaudri, Mario Jeckle, Erhard Rahm, and Rainer Unland

(editors), Web, Web-Services, and Database Systems. NODe 2002 Web- and
Database-Related Workshops, volume 2593, pages 169–183. Springer LNCS Se-
ries. 2002.

[MGMW05] David E. Millard, Nicholas Gibbins, Danius T. Michaelides, and
Mark J. Weal. Mind the Semantic Gap. In Siegfried Reich and Manolis

Tzagarakis (editors), Hypertext, pages 54–62. ACM. 2005.

[Mic06] Microsoft, Inc. Office 2003 XML Reference Schemas. Internet.
Http://www.microsoft.com/office/xml/overview.mspx. 2006.

[MJF03] Neil A.M. Maiden, Sara Jones, and Mary Flynn. Innovative Requirements
Engineering Applied to ATM. In Proceedings Air Traffic Management. Budapest.
2003.

[MK98] Heinrich C. Mayr and Christian Kop. Conceptual Predesign – Bridg-
ing the Gap between Requirements and Conceptual Design. In Proceedings of
the Third International Conference on Requirements Engineering, pages 90–100.
IEEE Computer Society. 1998.



172 BIBLIOGRAPHY

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management
Group, Inc. 2003.

[MM04] Frank Manola and Eric Miller. RDF Primer. Internet
http://www.w3.org/TR/rdf-primer/. Accessed 18 October 2006. 2004.

[MMWR01] Danius T. Michaelides, David E. Millard, Mark J. Weal, and David De

Roure. Auld Leaky: A Contextual Open Hypermedia Link Server. In
Siegfried Reich, Manolis Tzagarakis, and Paul De Bra (editors), OHS-
7/SC-3/AH-3, volume 2266 of Lecture Notes in Computer Science, pages 59–70.
Springer. 2001.

[MO04] Jonathan Marsh and David Orchard. XML Inclusions (XInclude) Version
1.0. Internet http://www.w3.org/TR/xinclude/. Accessed 16 Dec 2006. 2004.

[Moo05] Daniel L. Moody. Theoretical and practical issues in evaluating the quality
of conceptual models: current state and future directions. Data & Knowledge
Engineering, volume 55, no. 3; pages 243–276. 2005.

[Mot03] Motion Picture Experts Group. MPEG-7. ISO/IEC 15938-6:2003. 2003.

[MPP00] Annamaria Musto, Giuseppe Polese, and A. Pannella. Automatic Gen-
eration of RDBMS Based Applications from Object Oriented Design Schemes.
In SAC (1), pages 398–402. 2000.

[MS91] Florian Matthes and Joachim W. Schmidt. Bulk Types: Built-In or Add-
On? In Paris C. Kanellakis and Joachim W. Schmidt (editors), DBPL,
pages 33–54. Morgan Kaufmann. 1991.

[MS01] Alexander Maedche and Steffen Staab. Ontology Learning for the Se-
mantic Web. IEEE Intelligent Systems, volume 16, no. 2; pages 72–79. 2001.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for
OWL-DL with rules. Journal of Web Semantics, volume 3, no. 1; pages 41–60.
2005.

[Mue07] Kai Mueller. Signature Matching by Concept Contraction and Abduction.
Master’s thesis, Techische Universität Hamburg-Harburg. To appear. 2007.

[Mus98] Mark M. Musen. Ontology-Oriented Design and Programming. In J. Cuena,
Y. Demazeau, A. Garcia, and J. Treur (editors), Knowledge Engineering
and Agent Technology. IOS Press. 1998.

[MW97] Amy Moormann Zaremski and Jeannette M. Wing. Specification Match-
ing of Software Components. ACM Transaction on Softwware Engineering
Methodology, volume 6, no. 4; pages 333–369. 1997.

[MYR03] Saikat Mukherjee, Guizhen Yang, and I.V. Ramakrishnan. Automatic
Annotation of Content-Rich HTML Documents: Structural and Semantic Anal-
ysis. In The SemanticWeb - ISWC 2003, volume 2870 of Lecture Notes in Com-
puter Science, pages 533–549. 2003.

[Nel65] Ted Nelson. Complex Information Processing: A File Structure for the Com-
plex, the Changing and the Indeterminate. In Proceedings of the 1965 20th
National Conference, pages 84–100. ACM Press, New York, NY, USA. 1965.

[Ng00] Gary Kwok-Chu Ng. Interactive Visualisation Techniques for Ontology De-
velopment. Ph.D. thesis, University of Manchester, Department of Computer
Science. 2000.



BIBLIOGRAPHY 173

[NH97] Natalya Fridman Noy and Carole D. Hafner. The State of the Art in
Ontology Design: A Survey and Comparative Review. AI Magazine, volume 18,
no. 3; pages 53–74. 1997.

[NJ02] Andrew Nierman and H. V. Jagadish. Evaluating Structural Similarity in
XML Documents. In Proceedings of 5th International Workshop on the Web and
Databases, pages 61–66. Madison, WI. 2002.

[NM06] Bernd Neumann and Ralf Möller. On Scene Interpretation with Description
Logics. In H.I. Christensen and H.-H. Nagel (editors), Cognitive Vision
Systems: Samping the Spectrum of Approaches, number 3948 in LNCS, pages
247–278. Springer. 2006.

[NN91] Jocelyne Nanard and Marc Nanard. Using Structured Types to Incorpo-
rate Knowledge in Hypertext. In Hypertext’91 Proceedings, San Antonio, Texas,
USA, pages 329–343. ACM. 1991.

[Nor95] Moira C. Norrie. Distinguishing Typing and Classification in Object Data
Models. In Information Modelling and Knowledge Bases, volume VI. IOS. 1995.

[NSS01] Katashi Nagao, Yoshinari Shirai, and Kevin Squire. Semantic Annotation
and Transcoding: Making Web Content More Accessible. IEEE Multimedia,
volume 8, no. 2; pages 69–81. 2001.

[OAM99] Ilia A. Ovsiannikov, Michael A. Arbib, and Thomas H. McNeill. Anno-
tation technology. International Journal of Human-Computer Studies, volume 50,
no. 4; pages 329–362. 1999.

[OGC04] Open Geospacial Consortium OGC. Geography Markup Language (GML).
Internet http://portal.opengeospatial.org/files/?artifact id=4700. Accessed 1
Nov 2006. 2004.

[OMG96] Object Management Group OMG. The Common Object Request Broker:
Architecture and Specification Revision 2.0. OMG TC Document 96.03.04. 1996.

[Org86] International Standards Organization. Information Processing. Text and
Office Systems. Standard Generalized markup Language (SGML): Draf Stan-
dard. ISO 8879:1986. 1986.

[ØW96] Kasper Østerbye and Uffe Kock Wiil. The Flag Taxonomy of Open Hy-
permedia Systems. In Hypertext, pages 129–139. ACM. 1996.

[Pan70] Erwin Panofsky. Meaning in the Visual Arts. Penguin. 1970.

[PBE98] Simon Pollitt, Andrew Burrow, and Peter W. Eklund. WebKB-GE -
A Visual Editor for Canonical Conceptual Graphs. In International Conference
on Conceptual Structures, pages 111–118. 1998.

[Pei31] Charles Sanders Peirce. Collected Papers of Charles Sanders Peirce. Har-
vard University Press. 1931.

[PGC02] Domenico M. Pisanelli, Aldo Gangemi, and Gerardo Steve Consiglio.
Ontologies and Information Systems: the Marriage of the Century? In Proceed-
ings of the Lyee Workshop. Paris. 2002.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press.
2002.



174 BIBLIOGRAPHY

[PMM05] Angel Puerta, Michael Micheletti, and Alan Mak. The UI Pilot: A
Model-based Tool to Guide Early Interface Design. In IUI ’05: Proceedings of
the 10th international conference on Intelligent user interfaces, pages 215–222.
ACM Press, New York. 2005.

[Pri96] Lynne A. Price. Practical SGML as an Introduction to SGML. SIGDOC
Asterisk Journal of Computer Documentation, volume 20, no. 2; pages 36–38.
1996.

[Pro97] H. A. Erik Proper. Data Schema Design as a Schema Evolution Process. Data
Knowledge Engineering, volume 22, no. 2; pages 159–189. 1997.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type In-
ference. In Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages & Applications, pages 146–161. 1991.

[PSZ99] Christine Parent, Stefano Spaccapietra, and Esteban Zimányi. Spatio-
Temporal Conceptual Models: Data Structures + Space + Time. In Clau-

dia Bauzer Medeiros (editor), ACM-GIS, pages 26–33. ACM. 1999.

[PVS+06] Ioannis Pratikakis, Iris Vanhamel, Hichem Sahli, Basilios Gatos, and
Stavros J. Perantonis. Unsupervised Watershed-driven Region-based Image
Retrieval. IEEE Proceedings on Vision, Image and Signal Processing, Special
Issue on Knowledge-based Digital Media Processing, volume 153, no. 3; pages
313–322. 2006.

[PW97] Thomas A. Phelps and Robert Wilensky. Multivalent Annotations. In Pro-
ceedings of the First European Conference on Research and Advanced Technology
for Digital Libraries, pages 287–303. Springer-Verlag, London, UK. 1997.

[QKH03] Dennis Quan, David R. Karger, and D Huynh. RDF Authoring Environ-
ments for End Users. In Proceedings of Semantic Web Foundations and Appli-
cation Technologies 2003. Nara, Japan. 2003.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Au-
tomatic Schema Matching. VLDB Journal, volume 10, no. 4; pages 334–350.
2001.

[RBG02] Nicholas Routledge, Linda Bird, and Andrew Goodchild. UML and
XML schema. In ADC ’02: Proceedings of the thirteenth Australasian database
conference, pages 157–166. Australian Computer Society, Inc., Darlinghurst,
Australia, Australia. 2002.

[RDF04] RDF Vocabulary Description Language 1.0: RDF Schema. Internet
http://www.w3.org/TR/rdf-schema/. Accessed 30 Jan 2007. 2004.

[RDSM02] Allen Renear, David Dubin, and C. M. Sperberg-McQueen. Towards
a Semantics for XML Markup. In DocEng ’02: Proceedings of the 2002 ACM
Symposium on Document Engineering, pages 119–126. ACM Press, New York,
NY, USA. 2002.

[RDSMH03] Allen Renear, David Dubin, C. Michel Sperberg-McQueen, and Claus

Huitfeldt. XML Semantics and Digital Libraries. In Proceedings on Joint
Conference on Digital Libraries, pages 303–305. 2003.

[Rev88] György Revesz. Lambda-Calculus: Combinators, and Functional Program-
ming. Number 4 in Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press. 1988.



BIBLIOGRAPHY 175

[Rie00] Doug Riecken. Introduction: Personalized Views of Personalization. Commu-
nications of the ACM, volume 43, no. 8; pages 26–28. 2000.

[RMRD05] Jolita Ralyté, Neil A. M. Maiden, Colette Rolland, and Rébecca

Deneckère. Applying Modular Method Engineering to Validate and Extend
the RESCUE Requirements Process. In Delcambre et al. [DKM+05], pages
209–224. 2005.

[ROH05] Lloyd Rutledge, Jacco van Ossenbruggen, and Lynda Hardman. Mak-
ing RDF Presentable: Integrated Global and Local Semantic Web Browsing. In
Allan Ellis and Tatsuya Hagino (editors), WWW, pages 199–206. ACM.
2005.

[RP06] Peter Rechenberg and Gustav Pomberger (editors). Informatik Hand-
buch. Hanser, 4 edition. 2006.

[RR98] Sudha Ram and V. Ramesh. Collaborative Conceptual Schema Design: A Pro-
cess Model and Prototype System. ACM Transactions on Information Systems,
volume 16, no. 4; pages 347–371. 1998.

[RSG01] Gustavo Rossi, Daniel Schwabe, and Robson Guimaraes. Designing Per-
sonalized Web Applications. In Proceedings of the tenth international conference
on World Wide Web, pages 275–284. ACM Press. 2001.

[Rup04] Chris Rupp. Requirements-Engineering und -Management: Professionelle, it-
erative Anforderungsanalyse für die Praxis. Carl Hanser Verlag, 3 edition. 2004.

[SAA99] Guus Schreiber, Hans Akkermans, and Anjo Anjewierden. Knowledge
Engineering and Management: The Common KADS Methodology. MIT Press.
1999.

[SBS05] Hans-Werner Sehring, Sebastian Bossung, and Joachim W. Schmidt.
Active Learning By Personalization – Lessons Learnt from Research in Concep-
tual Content Management. In J. Cordeiro, V. Pedrosa, B. Encarnaca,
and J. Filipe (editors), Proceedings of the 1st International Conference on Web
Information Systems and Technologies, pages 496–503. INSTICC Press. 2005.

[SBS06] Hans-Werner Sehring, Sebastian Bossung, and Joachim W. Schmidt.
Content is Capricious: A Case for Dynamic Systems Generation. In Advances
in Databases and Information Systems, 10th East European Conference, ADBIS
2006, volume 4152 of LNCS, pages 430–445. Springer Verlag. 2006.

[SCC05] Veda C. Storey, Roger H. L. Chiang, and G. Lily Chen. Ontology Cre-
ation: Extraction of Domain Knowledge from Web Documents. In Delcambre

et al. [DKM+05], pages 256–269. 2005.

[SCD+97] Veda C. Storey, Roger H. L. Chiang, Debabrata Dey, Robert C.

Goldstein, and Shankar Sudaresan. Database Design with Common Sense
Business Reasoning and Learning. ACM Transactions on Database Systems,
volume 22, no. 4; pages 471–512. 1997.

[Sch24] Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathe-
matische Annalen, pages 305–316. 1924.

[Sch77] Joachim W. Schmidt. Some High Level Language Constructs for Data of
Type Relation. ACM Transactions on Database Systems, volume 2, no. 3; pages
247–261. 1977.



176 BIBLIOGRAPHY

[Sch99] A. Scharl. A Conceptual, User-Centric Approach to Modeling Web Information
Systems. In Proceedings of the 5th Australian World Wide Web Conference,
pages 33–49. Ballina. 1999.

[Sch06] J.W. Schmidt. Persistent Denotations for Conceptual Content Management:
Foundations of a Content Calculus. Technical Notes. Personal communication.
2006.

[Seh04] Hans-Werner Sehring. Konzeptorientiertes Content Management: Modell,
Systemarchitektur und Prototypen. Ph.D. thesis, Techische Universität Hamburg-
Harburg. 2004.

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software,
volume 20, no. 5; pages 19–25. 2003.

[SGU02] Veda C. Storey, Robert C. Goldstein, and Harald Ullrich. Naive Se-
mantics to Support Automated Database Design. IEEE Transactions on Knowl-
edge and Data Engineering, volume 14, no. 1; pages 1–12. 2002.

[SGW05] Sebastian Schaffert, Andreas Gruber, and Rupert Westenthaler.
A Semantic WIKI for Collaborative Knowledge Formation. In Proceedings of
SEMANTICS 2005 Conference, pages 188–202. Trauner Verlag, Vienna, Austria.
2005.

[SHZ04] Yannis Smaragdakis, Shan Shan Huang, and David Zook. Program Gen-
erators and the Tools to Make Them. In PEPM ’04: Proceedings of the 2004
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, pages 92–100. ACM Press. 2004.

[Sim94] Gary F. Simons. Conceptual Modeling versus Visual Modeling: A Techno-
logical Key to Building Consensus. Computers and the Humanities, volume 30,
no. 4; pages 303–319. 1994.

[SM99] Frank M. Shipman III and Catherine C. Marshall. Formality Considered
Harmful: Experiences, Emerging Themes, and Directions on the Use of Formal
Representations in Interactive Systems. Computer Supported Cooperative Work,
volume 8, no. 4; pages 333–352. 1999.

[SMBP] Sabrina Schönhart, Armin Müller, Laszlo Böszörmenyi, and Stefan

Podlipnig. People behind Informatics - Virtual exhibition in memory of Ole-
Johan Dahl, Edsger Wybe Dijkstra and Kristen Nygaard. Internet http://cs-
exhibitions.uni-klu.ac.at/index.php?id=185. Accessed 25 Oct 2006.

[SMHR03] C. Michel Speerenberg-McQueen, Claus Huitfeldt, and Allen Ren-

ear. Meaning and Interpretation of Markup. Markup Languages: Theory &
Practice, volume 3, no. 2; pages 215–234. 2003.

[SMJ02] Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data Modelling
versus Ontology Engineering. SIGMOD Record, volume 31, no. 4; pages 12–17.
2002.

[SMK02] Stefano Spaccapietra, Salvatore T. March, and Yahiko Kambayashi

(editors). Conceptual Modeling - ER 2002, 21st International Conference on
Conceptual Modeling, Tampere, Finland, October 7-11, 2002, Proceedings, vol-
ume 2503 of Lecture Notes in Computer Science. Springer. 2002.



BIBLIOGRAPHY 177

[SMMS02] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad

Stojanovic. User-Driven Ontology Evolution Management. In EKAW ’02:
Proceedings of the 13th International Conference on Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, pages 285–300.
Springer-Verlag, London, UK. 2002.

[Som00] Ian Sommerville. Software Engineering. Addison-Wesley. 2000.

[Sow00] John Sowa. Knowledge Representation. Brooks/Cole. 2000.

[SPK+05] Constantine D. Spyropoulos, Georgios Paliouras, Vangelis

Karkaletsis, Dimitrios Kosmopoulos, Ioannis Pratikakis, Stavros J.

Perantonis, and Basilios Gatos. BOEMIE: Bootstrapping Ontology Evo-
lution with Multimedia Information Extraction. In Integration of Knowledge,
Semantics and Digital Media Technology, 2005. EWIMT 2005, pages 419– 420.
2005.

[SR02] Christiane Schmitz-Rigal. Die Kunst offenen Wissens, Ernst Cassirers Epis-
temologie und Deutung der modernen Physik, volume 7 of Cassirer-Forschungen.
Ernst Meiner Verlag. 2002.

[SR03] Paul Shabajee and Dave Reynolds. What is Annotation? A Short Review of
Annotation and Annotation Systems. Technical Report 1053, Graduate School
of Education and Institute for Learning and Research Technology, University of
Bristol, Bristol, UK. 2003.

[SS99] Joachim W. Schmidt and Hans-Werner Sehring. Dockets: A Model for
Adding Value to Content. In Akoka et al. [ABCWM99], pages 248–262. 1999.

[SSS04] York Sure, Steffen Staab, and Rudi Studer. On-To-Knowledge Method-
ology (OTKM). In Steffen Staab and Rudi Studer (editors), Handbook on
Ontologies, pages 117 – 132. Springer Verlag. 2004.

[SSSS01] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure.
Knowledge Processes and Ontologies. IEEE Intelligent Systems, volume 16, no. 1;
pages 26–34. 2001.

[SSW01] Joachim W. Schmidt, Hans-Werner Sehring, and Martin Warnke. Der
Bildindex zur Politischen Ikonographie in der Warburg Electronic Library – Ein-
sichten eines interdisziplinären Projektes. In Hedwig Pompe and Leander

Scholz (editors), Archivprozesse. Die Kommunikation der Aufbewahrung, pages
238–268. Dumont. 2001.

[Sta03] International Organization for Standardization. Database Languages
SQL, ISO/IEC 9075- *:2003. 2003.

[Sto77] Joseph E. Stoy. The Scott-Strachey Approach to Programming Language The-
ory. The MIT Press. 1977.

[Sub96] Kazimierz Subieta. Object-Oriented Standards: Can ODMG OQL be Ex-
tented to a Programming Language? In Proceedings of the International Sym-
posium on Cooperative Database Applications, pages 459–468. 1996.

[SWBM89] Joachim W. Schmidt, Ingrid Wetzel, Alexander Borgida, and John

Mylopoulos. Database Programming by Formal Refinement of Conceptual
Designs. IEEE Data Engineering Bulletin, volume 12, no. 3; pages 53–61. 1989.



178 BIBLIOGRAPHY

[TH05] Yannis Tzitzikas and Jean-Luc Hainaut. How to Tame a Very Large ER
Diagram (Using Link Analysis and Force-Directed Drawing Algorithms). In
Delcambre et al. [DKM+05], pages 144–159. 2005.

[TMP98] R. Chung-Man Tam, David Maulsby, and Angel R. Puerta. U-TEL: A
Tool for Eliciting User Task Models from Domain Experts. In Proceedings of the
3rd International Conference on Intelligent User Interfaces, pages 77–80. ACM
Press, New York, NY, USA. 1998.

[Tri05] Bill Trippe. Component Content Management in Practice. Technical report,
X-Hive. 2005.

[Tro03] Raphaël Troncy. Integrating Structure and Semantics into Audio-visual Doc-
uments. In D. Fensel, K. Sycara, and J. Mylopoulos (editors), The In-
ternational Semantic Web Conference - Proceedings ISWC’03, volume 2870 of
Lecture Notes in Computer Science, pages 566–581. Springer Verlag. 2003.

[TW86] Randall H. Trigg and Mark Weiser. TEXTNET: A Network-Based Ap-
proach to Text Handling. ACM Transactions on Information Systems, volume 4,
no. 1; pages 1–23. 1986.

[Uri05] José Alejandro Uriza Zepahua. Conceptual Content Markup: A Prototypi-
cal Implementation. Master’s thesis, Technische Universität Hamburg-Harburg.
2005.

[VFC05] David Vallet, Miriam Fernández, and Pablo Castells. An Ontology-
Based Information Retrieval Model. In Asunción Gómez-Pérez and Jérôme

Euzenat (editors), ESWC, volume 3532 of Lecture Notes in Computer Science,
pages 455–470. Springer. 2005.

[W3C99] W3C. XML Path Language (XPath). Internet http://www.w3.org/TR/xpath.
Accessed 15 Dec 2006. 1999.

[W3C02] W3C. The Extensible HyperText Markup Language. Internet
http://www.w3.org/TR/xhtml1/. Accessed 18 Dec 2006. 2002.

[W3C05a] W3C. Scalable Vector Graphics (SVG) Full 1.2 Specification. Internet
http://www.w3.org/TR/SVG12/. Accessed 15 Dec 2006. 2005.

[W3C05b] W3C. Synchronized Multimedia Integration Language (SMIL 2.1). Internet
http://www.w3.org/TR/2005/REC-SMIL2-20051213/. Accessed 10 Jan 2007.
2005.

[Wad02] Philip Wadler. XQuery: A Typed Functional Language for Querying XML. In
Johan Jeuring and Simon L. Peyton Jones (editors), Advanced Functional
Programming, volume 2638 of Lecture Notes in Computer Science, pages 188–
212. Springer. 2002.

[WAS06] Vincent Wade, Helen Ashman, and Barry Smyth (editors). Adaptive Hy-
permedia and Adaptive Web-Based Systems: 4th International Conference, AH
2006, Dublin, Ireland, June 21-23, 2006, Proceedings, volume 4016 of Lecture
Notes in Computer Science. Springer. 2006.

[Wat02] Dennis G. Watson. Brief History of Document Markup. Circular 1086, Agri-
cultural and Biological Engineering Department, University of Florida. 2002.



BIBLIOGRAPHY 179

[WC00] Kiri Wagstaff and Claire Cardie. Clustering with Instance-level Con-
straints. In Pat Langley (editor), International Conference on Machine Learn-
ing, pages 1103–1110. Morgan Kaufmann. 2000.

[Web90] Webster’s Desk Dictionary of the English Language. Portland House, New York.
1990.

[Wed00] Lex Wedemeijer. Defining Metrics for Conceptual Schema Evolution. In
Herman Balsters, Bert O. de Brock, and Stefan Conrad (editors),
FMLDO, volume 2065 of Lecture Notes in Computer Science, pages 220–244.
Springer. 2000.

[Wes04] Thijs Westerveld. Using Generative Probabilistic Models for Multimedia Re-
trieval. Ph.d. thesis, University of Twente, Enschede, The Netherlands. 2004.

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, volume 25; pages 38–49. 1992.

[WMBS04] Felix Weigel, Holger Meuss, Francois Bry, and Klaus U. Schulz.
Content-Aware DataGuides: Interleaving IR and DB Indexing Techniques for
Efficient Retrieval of Textual XML Data. In Proceedings of Advances in In-
formation Retrieval: 26th European Conference on IR Research, ECIR 2004,
volume 2997 of Lecture Notes in Computer Science, pages 378 – 393. Springer
Verlag. 2004.

[WS03] Raymond K. Wong and Jason Sankey. On Structural Inference for XML
Data. Technical report, University of New South Wales. 2003.



Index

λ-calculus, 21

abduction, 114
abstraction, 46, 64
abstraction axis, 71
abstraction variable, 22
ADL, see Asset Definition Language
AE→, 59
AEC , 102
AEL, see Asset Expression Language
AEQL, see Asset Expression Query Language
AES, see Asset Expression System
annotation, 30, 153

conceptual, 31
Any type, 60
application, 47, 64
application axis, 71
Asset, 6, 17
Asset class, 18, 102
Asset Definition Language, 18
Asset Expression, 44
Asset Expression Language, 43

grammar, 48, 81
Asset Expression Query Language, 69
Asset Expression System, 85
audio, 57
axis, 70

bind, 46

callability, 116
cardinality, 115
Cassirer, 3, 4, 17, 149
CCM, see Conceptual Content Management
CCMS, see Conceptual Content Management

System
class-based type system, 102
collaboration, 90, 143
component, 51, 74, 110
Conceptual Content Management, 18, 101
Conceptual Content Management System, 19,

145
content, 3, 44, 45
content axis, 71

context, 43
contraction, 114
conversion, 108
currying, 46

Delphi method, 155
demand, 116
denotational semantics, 23
design principles, 149
domain expert, 127
dynamics, 19, 81, 102

explanation, 47
expressions axis, 71
extensions of man, 149

firstness, 5

give-up, 117
GKNS, 126, 139

handling, 74
heterogenous content, 58
HTML, 56, 58
hypermedia, 154

iconographical, 5, 157
iconological, 5, 157
image, 57
impedance mismatch, 16
implementation, 137
inspector, 9, 90
intensional type, 103

keep, 117
knowledge base, 114
knowledge representation system, 114
KRS, see knowledge representation system

lambda-calculus, 21
lifting, 62, 64, 67
literal, 60
LLD, see low level descriptor
low-level descriptor, 57

map−1
C , 107

180



INDEX 181

map−1
S , 107

mapC , 107
mapS , 104, 107
markup, 28, 153

descriptive, 29
generic, 29
procedural, 28
specific, 28

McLuhan, 149
mediator, 20
mention-handling, 74
modeling expert, 127
module, 19
MPEG-7, 35, 57, 153

name
local, 91

named expression, 46
namespace, 91

object-oriented analysis, 155
On-To-Knowledge, 156
ontology, 24, 153
ontology engineering, 155
open modeling, 19, 81, 102
openness, see open modeling
operand, 22, 64
operand axis, 71
operator, 22, 64
operator axis, 71
OWL, 157

Panofsky, 5
parent axis, 71
partially applied expression, 81
path, 72
PDF, 58
Peirce, 5
penalty, 117, 119
personalization, 19, 81, 126
piece-handling, 75
plain text, 55
pre-iconographical, 5, 157
predicate, 72
prospector, 9, 90
prototype, 134

RDF, 157
rebind, 49, 64
reduction, 22, 75
relation, 13
relational model, 13
remove, 49

requirements analysis, 127

schema construction, 130
schema inference, 131
schema quality, 132, 136
secondness, 5
selector, 51
semantic type, 60

description logic model, 115
discovery, 113
examples, 141

semantic web, 154
semi-structured data, 15
SGML, 29, 56
signature matching, 113
signature model, 114
SMIL, 59
specification, 136
structured document, 56
substitution, 22, 76
supply, 116
SVG, 57
symbol, 4

thridness, 5
trait, 67

examples, 144
type construction, 61

UCSCP, see User Centric Schema Creation Pro-
cess

usage, 137
use-handling, 75
User Centric Schema Creation Process, 125,

155

variable axis, 71
video, 58
visual notation, 48, 62

workspace, 89

XInclude, 39
XML, 57, 130
XML Schema, 38, 130
XPath, 40, 55, 56
XQuery, 39


	List of Figures
	List of Tables
	Introduction
	Representation of Entities
	Entity Descriptions in Information Systems
	Research Objectives
	Capturing the Meaning of Content
	System Support

	Approach to Solution and Overview

	Context of This Work
	Data Model Extensions
	Persistent Data
	Persistency in Programming Languages
	Assets: Dualistic Description of Entities
	Conceptual Content Management

	Foundations
	Functional Programming
	Denotational Semantics
	Ontologies

	Semantic Models for Multimedial Content
	Structured Documents
	Hypermedia
	Semantic Descriptions

	Introduction to Some Technologies
	XML Schema
	XML Inclusions
	XML Query


	Core Asset Expression Language
	Plain Asset Expressions
	Syntax
	Visual Notation
	Lifecycle

	Content Components
	Components
	Selectors in Different Kinds of Content

	Typed Asset Expressions
	Semantic Types
	Type Construction
	Expression Typing
	Typing Rules
	Rationale of This Type System
	Typing Example


	Extended Asset Expression Language
	Traits for Asset Expressions
	Asset Expression Query Language
	Navigating Expressions
	Predicates
	Creation

	Handling Components
	Mention-Handling
	Use-Handling
	Piece-Handling

	Normal Form with Content
	Reduction
	Substitution

	Content Construction
	Notes on the Use of Asset Expressions
	Multiple Domains
	Openness and Dynamics

	Grammar

	Systems for Asset Expression Support
	Scope of Asset Expression Systems
	A General Architecture for Asset Expression Systems
	Storage Layer
	Semi-structured Data Model for Asset Expressions

	Manipulation Layer
	Workspaces
	Content Kind Registry
	Persistency Points
	Reduction
	Query

	Presentation Layer
	Navigation
	Automatic Layout


	Asset Expressions and Conceptual Schemata
	Intensional Typing of Asset Expressions
	Types
	Typing Rules
	Types for Characteristics and Content
	Typing Example

	Converting Asset Expressions to Asset Instances
	Translation Rules
	Conversion of Content Components
	Convertible Expressions


	Pragmatics
	Type Inference for Semantic Types
	Representation of Signatures
	Reasoning for Signature Matching
	Example

	Type Inference for Intensional Types
	Lessons Learnt
	Process Support for Openness and Dynamics
	System Integration
	Quality of the Created Schema


	Application Example
	The Application Domain
	Asset Expressions for Domain Entities
	Semantic Types
	Collaborative Creation of Expressions
	Conceptual Schema and Information System
	Evaluation

	Summary and Discussion
	Contributions
	Comparison with Related Approaches
	Descriptions of Medial Content
	Schema Creation Processes

	Future Work

	Bibliography
	Index

